
UNIXTM TIME-SHARING SYSTEM:

UNIX PROGRAMMER’S MANUAL

Seventh Edition, Volume 2A

January, 1979

Bell Telephone Laboratories, Incorporated
Murray Hill, New Jersey

UNIX Programmer’s Manual

Volume 2 — Supplementary Documents

Seventh Edition

January 10, 1979

This volume contains documents which supplement the information contained in Volume 1 of The
UNIX† Programmer’s Manual. The documents here are grouped roughly into the areas of basics, editing,
language tools, document preparation, and system maintenance. Further general information may be
found in the Bell System Technical Journal special issue on UNIX, July-August, 1978.

Many of the documents cited within this volume as Bell Laboratories internal memoranda or Com-
puting Science Technical Reports (CSTR) are also contained here.

These documents contain occasional localisms, typically references to other operating systems like
GCOS and IBM. In all cases, such references may be safely ignored by UNIX users.

General Works

1. 7th Edition UNIX — Summary.
A concise summary of the facilities available on UNIX.

2. The UNIX Time-Sharing System. D. M. Ritchie and K. Thompson.
The original UNIX paper, reprinted from CACM.

Getting Started

3. UNIX for Beginners — Second Edition. B. W. Kernighan.
An introduction to the most basic use of the system.

4. A Tutorial Introduction to the UNIX Text Editor. B. W. Kernighan.
An easy way to get started with the editor.

5. Advanced Editing on UNIX. B. W. Kernighan.
The next step.

6. An Introduction to the UNIX Shell. S. R. Bourne.
An introduction to the capabilities of the command interpreter, the shell.

7. Learn — Computer Aided Instruction on UNIX. M. E. Lesk and B. W. Kernighan.
Describes a computer-aided instruction program that walks new users through the basics of
files, the editor, and document preparation software.

Document Preparation

8. Typing Documents on the UNIX System. M. E. Lesk.
Describes the basic use of the formatting tools. Also describes ‘‘– ms’’, a standardized
package of formatting requests that can be used to lay out most documents (including those
in this volume).

†UNIX is a Trademark of Bell Laboratories.

- 2 -

9. A System for Typesetting Mathematics. B. W. Kernighan and L. L. Cherry.
Describes EQN. an easy-to-learn language for doing high-quality mathematical typesetting,

10. TBL — A Program to Format Tables. M. E. Lesk.
A program to permit easy specification of tabular material for typesetting. Again, easy to
learn and use.

11. Some Applications of Inverted Indexes on the UNIX System. M. E. Lesk.
Describes, among other things, the program REFER which fills in bibliographic citations
from a data base automatically.

12. NROFF/TROFF User’s Manual. J. F. Ossanna.
The basic formatting program.

13. A TROFF Tutorial. B. W. Kernighan.
An introduction to TROFF for those who really want to know such things.

Programming

14. The C Programming Language — Reference Manual. D. M. Ritchie.
Official statement of the syntax and semantics of C. Should be supplemented by The C
Programming Language, B. W. Kernighan and D. M. Ritchie, Prentice-Hall, 1978, which
contains a tutorial introduction and many examples.

15. Lint, A C Program Checker. S. C. Johnson.
Checks C programs for syntax errors, type violations, portability problems, and a variety of
probable errors.

16. Make — A Program for Maintaining Computer Programs. S. I. Feldman.
Indispensable tool for making sure that large programs are properly compiled with minimal
effort.

17. UNIX Programming. B. W. Kernighan and D. M. Ritchie.
Describes the programming interface to the operating system and the standard I/O library.

18. A Tutorial Introduction to ADB. J. F. Maranzano and S. R. Bourne.
How to use the ADB debugger.

Supporting Tools and Languages

19. YACC: Yet Another Compiler-Compiler. S. C. Johnson.
Converts a BNF specification of a language and semantic actions written in C into a com-
piler for the language.

20. LEX — A Lexical Analyzer Generator. M. E. Lesk and E. Schmidt.
Creates a recognizer for a set of regular expressions; each regular expression can be fol-
lowed by arbitrary C code which will be executed when the regular expression is found.

21. A Portable Fortran 77 Compiler. S. I. Feldman and P. J. Weinberger.
The first Fortran 77 compiler, and still one of the best.

22. Ratfor — A Preprocessor for a Rational Fortran. B. W. Kernighan.
Converts a Fortran with C-like control structures and cosmetics into real, ugly Fortran.

23. The M4 Macro Processor. B. W. Kernighan and D. M. Ritchie.
M4 is a macro processor useful as a front end for C, Ratfor, Cobol, and in its own right.

24. SED — A Non-interactive Text Editor. L. E. McMahon.
A variant of the editor for processing large inputs.

25. AWK — A Pattern Scanning and Processing Language. A. V. Aho, B. W. Kernighan and
P. J. Weinberger.
Makes it easy to specify many data transformation and selection operations.

- 3 -

26. DC — An Interactive Desk Calculator. R. H. Morris and L. L. Cherry.
A super HP calculator, if you don’t need floating point.

27. BC — An Arbitrary Precision Desk-Calculator Language. L. L. Cherry and R. H. Morris.
A front end for DC that provides infix notation, control flow, and built-in functions.

28. UNIX Assembler Reference Manual. D. M. Ritchie.
The ultimate dead language.

Implementation, Maintenance, and Miscellaneous

29. Setting Up UNIX — Seventh Edition. C. B. Haley and D. M. Ritchie.
How to configure and get your system running.

30. Regenerating System Software. C. B. Haley and D. M. Ritchie.
What do do when you have to change things.

31. UNIX Implementation. K. Thompson.
How the system actually works inside.

32. The UNIX I/O System. D. M. Ritchie.
How the I/O system really works.

33. A Tour Through the UNIX C Compiler. D. M. Ritchie.
How the PDP-11 compiler works inside.

34. A Tour Through the Portable C Compiler. S. C. Johnson.
How the portable C compiler works inside.

35. A Dial-Up Network of UNIX Systems. D. A. Nowitz and M. E. Lesk.
Describes UUCP, a program for communicating files between UNIX systems.

36. UUCP Implementation Description. D. A. Nowitz.
How UUCP works, and how to administer it.

37. On the Security of UNIX. D. M. Ritchie.
Hints on how to break UNIX, and how to avoid doing so.

38. Password Security: A Case History. R. H. Morris and K. Thompson.
How the bad guys used to be able to break the password algorithm, and why they can’t
now, at least not so easily.

7th Edition UNIX — Summary

September 6, 1978

Bell Laboratories
Murray Hill, New Jersey 07974

A. What’s new: highlights of the 7th edition UNIX† System

Aimed at larger systems. Devices are addressable to 231 bytes, files to 230 bytes. 128K memory
(separate instruction and data space) is needed for some utilities.

Portability. Code of the operating system and most utilities has been extensively revised to minimize
its dependence on particular hardware.

Fortran 77. F77 compiler for the new standard language is compatible with C at the object level. A
Fortran structurer, STRUCT, converts old, ugly Fortran into RATFOR, a structured dialect usable with
F77.

Shell. Completely new SH program supports string variables, trap handling, structured programming,
user profiles, settable search path, multilevel file name generation, etc.

Document preparation. TROFF phototypesetter utility is standard. NROFF (for terminals) is now
highly compatible with TROFF. MS macro package provides canned commands for many common for-
matting and layout situations. TBL provides an easy to learn language for preparing complicated tabular
material. REFER fills in bibliographic citations from a data base.

UNIX-to-UNIX file copy. UUCP performs spooled file transfers between any two machines.

Data processing. SED stream editor does multiple editing functions in parallel on a data stream of
indefinite length. AWK report generator does free-field pattern selection and arithmetic operations.

Program development. MAKE controls re-creation of complicated software, arranging for minimal
recompilation.

Debugging. ADB does postmortem and breakpoint debugging, handles separate instruction and data
spaces, floating point, etc.

C language. The language now supports definable data types, generalized initialization, block structure,
long integers, unions, explicit type conversions. The LINT verifier does strong type checking and detec-
tion of probable errors and portability problems even across separately compiled functions.

Lexical analyzer generator. LEX converts specification of regular expressions and semantic actions
into a recognizing subroutine. Analogous to YACC.

Graphics. Simple graph-drawing utility, graphic subroutines, and generalized plotting filters adapted to
various devices are now standard.

Standard input-output package. Highly efficient buffered stream I/O is integrated with formatted
input and output.

Other. The operating system and utilities have been enhanced and freed of restrictions in many other
ways too numerous to relate.

† UNIX is a Trademark of Bell Laboratories.

- 2 -

B. Hardware

The 7th edition UNIX operating system runs on a DEC PDP-11/45 or 11/70* with at least the fol-
lowing equipment:

128K to 2M words of managed memory; parity not used.

disk: RP03, RP04, RP06, RK05 (more than 1 RK05) or equivalent.

console typewriter.

clock: KW11-L or KW11-P.

The following equipment is strongly recommended:

communications controller such as DL11 or DH11.

full duplex 96-character ASCII terminals.

9-track tape or extra disk for system backup.

The system is normally distributed on 9-track tape. The minimum memory and disk space specified is
enough to run and maintain UNIX. More will be needed to keep all source on line, or to handle a large
number of users, big data bases, diversified complements of devices, or large programs. The resident
code occupies 12-20K words depending on configuration; system data occupies 10-28K words.

There is no commitment to provide 7th edition UNIX on PDP-11/34, 11/40 and 11/60 hardware.

C. Software

Most of the programs available as UNIX commands are listed. Source code and printed manuals
are distributed for all of the listed software except games. Almost all of the code is written in C. Com-
mands are self-contained and do not require extra setup information, unless specifically noted as
‘‘interactive.’’ Interactive programs can be made to run from a prepared script simply by redirecting
input. Most programs intended for interactive use (e.g., the editor) allow for an escape to command
level (the Shell). Most file processing commands can also go from standard input to standard output
(‘‘filters’’). The piping facility of the Shell may be used to connect such filters directly to the input or
output of other programs.

1. Basic Software

This includes the time-sharing operating system with utilities, a machine language assembler and a
compiler for the programming language C—enough software to write and run new applications and to
maintain or modify UNIX itself.

1.1. Operating System

UNIX The basic resident code on which everything else depends. Supports the system calls,
and maintains the file system. A general description of UNIX design philosophy and
system facilities appeared in the Communications of the ACM, July, 1974. A more
extensive survey is in the Bell System Technical Journal for July-August 1978. Capa-
bilities include:

Reentrant code for user processes.
Separate instruction and data spaces.
‘‘Group’’ access permissions for cooperative projects, with overlapping member-
ships.
Alarm-clock timeouts.
Timer-interrupt sampling and interprocess monitoring for debugging and measure-
ment.

*PDP is a Trademark of Digital Equipment Corporation.

- 3 -

Multiplexed I/O for machine-to-machine communication.

DEVICES All I/O is logically synchronous. I/O devices are simply files in the file system. Nor-
mally, invisible buffering makes all physical record structure and device characteristics
transparent and exploits the hardware’s ability to do overlapped I/O. Unbuffered phy-
sical record I/O is available for unusual applications. Drivers for these devices are
available; others can be easily written:

Asynchronous interfaces: DH11, DL11. Support for most common ASCII terminals.
Synchronous interface: DP11.
Automatic calling unit interface: DN11.
Line printer: LP11.
Magnetic tape: TU10 and TU16.
DECtape: TC11.
Fixed head disk: RS11, RS03 and RS04.
Pack type disk: RP03, RP04, RP06; minimum-latency seek scheduling.
Cartridge-type disk: RK05, one or more physical devices per logical device.
Null device.
Physical memory of PDP-11, or mapped memory in resident system.
Phototypesetter: Graphic Systems System/1 through DR11C.

BOOT Procedures to get UNIX started.

MKCONF Tailor device-dependent system code to hardware configuration. As distributed, UNIX
can be brought up directly on any acceptable CPU with any acceptable disk, any
sufficient amount of core, and either clock. Other changes, such as optimal assignment
of directories to devices, inclusion of floating point simulator, or installation of device
names in file system, can then be made at leisure.

1.2. User Access Control

LOGIN Sign on as a new user.
Verify password and establish user’s individual and group (project) identity.
Adapt to characteristics of terminal.
Establish working directory.
Announce presence of mail (from MAIL).
Publish message of the day.
Execute user-specified profile.
Start command interpreter or other initial program.

PASSWD Change a password.
User can change his own password.
Passwords are kept encrypted for security.

NEWGRP Change working group (project). Protects against unauthorized changes to projects.

1.3. Terminal Handling

TABS Set tab stops appropriately for specified terminal type.

STTY Set up options for optimal control of a terminal. In so far as they are deducible from
the input, these options are set automatically by LOGIN.

Half vs. full duplex.
Carriage return+line feed vs. newline.
Interpretation of tabs.
Parity.

- 4 -

Mapping of upper case to lower.
Raw vs. edited input.
Delays for tabs, newlines and carriage returns.

1.4. File Manipulation

CAT Concatenate one or more files onto standard output. Particularly used for unadorned
printing, for inserting data into a pipeline, and for buffering output that comes in dribs
and drabs. Works on any file regardless of contents.

CP Copy one file to another, or a set of files to a directory. Works on any file regardless
of contents.

PR Print files with title, date, and page number on every page.
Multicolumn output.
Parallel column merge of several files.

LPR Off-line print. Spools arbitrary files to the line printer.

CMP Compare two files and report if different.

TAIL Print last n lines of input
May print last n characters, or from n lines or characters to end.

SPLIT Split a large file into more manageable pieces. Occasionally necessary for editing
(ED).

DD Physical file format translator, for exchanging data with foreign systems, especially
IBM 370’s.

SUM Sum the words of a file.

1.5. Manipulation of Directories and File Names

RM Remove a file. Only the name goes away if any other names are linked to the file.
Step through a directory deleting files interactively.
Delete entire directory hierarchies.

LN ‘‘Link’’ another name (alias) to an existing file.

MV Move a file or files. Used for renaming files.

CHMOD Change permissions on one or more files. Executable by files’ owner.

CHOWN Change owner of one or more files.

CHGRP Change group (project) to which a file belongs.

MKDIR Make a new directory.

RMDIR Remove a directory.

CD Change working directory.

FIND Prowl the directory hierarchy finding every file that meets specified criteria.
Criteria include:

name matches a given pattern,
creation date in given range,
date of last use in given range,
given permissions,
given owner,
given special file characteristics,
boolean combinations of above.

- 5 -

Any directory may be considered to be the root.
Perform specified command on each file found.

1.6. Running of Programs

SH The Shell, or command language interpreter.
Supply arguments to and run any executable program.
Redirect standard input, standard output, and standard error files.
Pipes: simultaneous execution with output of one process connected to the input of
another.
Compose compound commands using:

if ... then ... else,
case switches,
while loops,
for loops over lists,
break, continue and exit,
parentheses for grouping.

Initiate background processes.
Perform Shell programs, i.e., command scripts with substitutable arguments.
Construct argument lists from all file names satisfying specified patterns.
Take special action on traps and interrupts.
User-settable search path for finding commands.
Executes user-settable profile upon login.
Optionally announces presence of mail as it arrives.
Provides variables and parameters with default setting.

TEST Tests for use in Shell conditionals.
String comparison.
File nature and accessibility.
Boolean combinations of the above.

EXPR String computations for calculating command arguments.
Integer arithmetic
Pattern matching

WAIT Wait for termination of asynchronously running processes.

READ Read a line from terminal, for interactive Shell procedure.

ECHO Print remainder of command line. Useful for diagnostics or prompts in Shell pro-
grams, or for inserting data into a pipeline.

SLEEP Suspend execution for a specified time.

NOHUP Run a command immune to hanging up the terminal.

NICE Run a command in low (or high) priority.

KILL Terminate named processes.

CRON Schedule regular actions at specified times.
Actions are arbitrary programs.
Times are conjunctions of month, day of month, day of week, hour and minute.
Ranges are specifiable for each.

AT Schedule a one-shot action for an arbitrary time.

TEE Pass data between processes and divert a copy into one or more files.

- 6 -

1.7. Status Inquiries

LS List the names of one, several, or all files in one or more directories.
Alphabetic or temporal sorting, up or down.
Optional information: size, owner, group, date last modified, date last accessed, per-
missions, i-node number.

FILE Try to determine what kind of information is in a file by consulting the file system
index and by reading the file itself.

DATE Print today’s date and time. Has considerable knowledge of calendric and horological
peculiarities.

May set UNIX’s idea of date and time.

DF Report amount of free space on file system devices.

DU Print a summary of total space occupied by all files in a hierarchy.

QUOT Print summary of file space usage by user id.

WHO Tell who’s on the system.
List of presently logged in users, ports and times on.
Optional history of all logins and logouts.

PS Report on active processes.
List your own or everybody’s processes.
Tell what commands are being executed.
Optional status information: state and scheduling info, priority, attached terminal,
what it’s waiting for, size.

IOSTAT Print statistics about system I/O activity.

TTY Print name of your terminal.

PWD Print name of your working directory.

1.8. Backup and Maintenance

MOUNT Attach a device containing a file system to the tree of directories. Protects against
nonsense arrangements.

UMOUNT Remove the file system contained on a device from the tree of directories. Protects
against removing a busy device.

MKFS Make a new file system on a device.

MKNOD Make an i-node (file system entry) for a special file. Special files are physical devices,
virtual devices, physical memory, etc.

TP

TAR Manage file archives on magnetic tape or DECtape. TAR is newer.
Collect files into an archive.
Update DECtape archive by date.
Replace or delete DECtape files.
Print table of contents.
Retrieve from archive.

DUMP Dump the file system stored on a specified device, selectively by date, or indiscrim-
inately.

- 7 -

RESTOR Restore a dumped file system, or selectively retrieve parts thereof.

SU Temporarily become the super user with all the rights and privileges thereof. Requires
a password.

DCHECK

ICHECK

NCHECK Check consistency of file system.
Print gross statistics: number of files, number of directories, number of special files,
space used, space free.
Report duplicate use of space.
Retrieve lost space.
Report inaccessible files.
Check consistency of directories.
List names of all files.

CLRI Peremptorily expunge a file and its space from a file system. Used to repair damaged
file systems.

SYNC Force all outstanding I/O on the system to completion. Used to shut down gracefully.

1.9. Accounting

The timing information on which the reports are based can be manually cleared or shut off completely.

AC Publish cumulative connect time report.
Connect time by user or by day.
For all users or for selected users.

SA Publish Shell accounting report. Gives usage information on each command executed.
Number of times used.
Total system time, user time and elapsed time.
Optional averages and percentages.
Sorting on various fields.

1.10. Communication

MAIL Mail a message to one or more users. Also used to read and dispose of incoming
mail. The presence of mail is announced by LOGIN and optionally by SH.

Each message can be disposed of individually.
Messages can be saved in files or forwarded.

CALENDAR Automatic reminder service for events of today and tomorrow.

WRITE Establish direct terminal communication with another user.

WALL Write to all users.

MESG Inhibit receipt of messages from WRITE and WALL.

CU Call up another time-sharing system.
Transparent interface to remote machine.
File transmission.
Take remote input from local file or put remote output into local file.
Remote system need not be UNIX.

UUCP UNIX to UNIX copy.

- 8 -

Automatic queuing until line becomes available and remote machine is up.
Copy between two remote machines.
Differences, mail, etc., between two machines.

1.11. Basic Program Development Tools

Some of these utilities are used as integral parts of the higher level languages described in section 2.

AR Maintain archives and libraries. Combines several files into one for housekeeping
efficiency.

Create new archive.
Update archive by date.
Replace or delete files.
Print table of contents.
Retrieve from archive.

AS Assembler. Similar to PAL-11, but different in detail.
Creates object program consisting of

code, possibly read-only,
initialized data or read-write code,
uninitialized data.

Relocatable object code is directly executable without further transformation.
Object code normally includes a symbol table.
Multiple source files.
Local labels.
Conditional assembly.
‘‘Conditional jump’’ instructions become branches or branches plus jumps depend-
ing on distance.

Library The basic run-time library. These routines are used freely by all software.
Buffered character-by-character I/O.
Formatted input and output conversion (SCANF and PRINTF) for standard input and
output, files, in-memory conversion.
Storage allocator.
Time conversions.
Number conversions.
Password encryption.
Quicksort.
Random number generator.
Mathematical function library, including trigonometric functions and inverses,
exponential, logarithm, square root, bessel functions.

ADB Interactive debugger.
Postmortem dumping.
Examination of arbitrary files, with no limit on size.
Interactive breakpoint debugging with the debugger as a separate process.
Symbolic reference to local and global variables.
Stack trace for C programs.
Output formats:

1-, 2-, or 4-byte integers in octal, decimal, or hex
single and double floating point
character and string
disassembled machine instructions

Patching.

- 9 -

Searching for integer, character, or floating patterns.
Handles separated instruction and data space.

OD Dump any file. Output options include any combination of octal or decimal by words,
octal by bytes, ASCII, opcodes, hexadecimal.

Range of dumping is controllable.

LD Link edit. Combine relocatable object files. Insert required routines from specified
libraries.

Resulting code may be sharable.
Resulting code may have separate instruction and data spaces.

LORDER Places object file names in proper order for loading, so that files depending on others
come after them.

NM Print the namelist (symbol table) of an object program. Provides control over the style
and order of names that are printed.

SIZE Report the core requirements of one or more object files.

STRIP Remove the relocation and symbol table information from an object file to save space.

TIME Run a command and report timing information on it.

PROF Construct a profile of time spent per routine from statistics gathered by time-sampling
the execution of a program. Uses floating point.

Subroutine call frequency and average times for C programs.

MAKE Controls creation of large programs. Uses a control file specifying source file depen-
dencies to make new version; uses time last changed to deduce minimum amount of
work necessary.

Knows about CC, YACC, LEX, etc.

1.12. UNIX Programmer’s Manual

Manual Machine-readable version of the UNIX Programmer’s Manual.
System overview.
All commands.
All system calls.
All subroutines in C and assembler libraries.
All devices and other special files.
Formats of file system and kinds of files known to system software.
Boot and maintenance procedures.

MAN Print specified manual section on your terminal.

1.13. Computer-Aided Instruction

LEARN A program for interpreting CAI scripts, plus scripts for learning about UNIX by using
it.

Scripts for basic files and commands, editor, advanced files and commands, EQN,
MS macros, C programming language.

2. Languages

2.1. The C Language

- 10 -

CC Compile and/or link edit programs in the C language. The UNIX operating system,
most of the subsystems and C itself are written in C. For a full description of C, read
The C Programming Language, Brian W. Kernighan and Dennis M. Ritchie, Prentice-
Hall, 1978.

General purpose language designed for structured programming.
Data types include character, integer, float, double, pointers to all types, functions
returning above types, arrays of all types, structures and unions of all types.
Operations intended to give machine-independent control of full machine facility,
including to-memory operations and pointer arithmetic.
Macro preprocessor for parameterized code and inclusion of standard files.
All procedures recursive, with parameters by value.
Machine-independent pointer manipulation.
Object code uses full addressing capability of the PDP-11.
Runtime library gives access to all system facilities.
Definable data types.
Block structure

LINT Verifier for C programs. Reports questionable or nonportable usage such as:
Mismatched data declarations and procedure interfaces.
Nonportable type conversions.
Unused variables, unreachable code, no-effect operations.
Mistyped pointers.
Obsolete syntax.

Full cross-module checking of separately compiled programs.

CB A beautifier for C programs. Does proper indentation and placement of braces.

2.2. Fortran

F77 A full compiler for ANSI Standard Fortran 77.
Compatible with C and supporting tools at object level.
Optional source compatibility with Fortran 66.
Free format source.
Optional subscript-range checking, detection of uninitialized variables.
All widths of arithmetic: 2- and 4-byte integer; 4- and 8-byte real; 8- and 16-byte
complex.

RATFOR Ratfor adds rational control structure à la C to Fortran.
Compound statements.
If-else, do, for, while, repeat-until, break, next statements.
Symbolic constants.
File insertion.
Free format source
Translation of relationals like >, >=.
Produces genuine Fortran to carry away.
May be used with F77.

STRUCT Converts ordinary ugly Fortran into structured Fortran (i.e., Ratfor), using statement
grouping, if-else, while, for, repeat-until.

2.3. Other Algorithmic Languages

BAS An interactive interpreter, similar in style to BASIC. Interpret unnumbered statements
immediately, numbered statements upon ‘run’.

- 11 -

Statements include:
comment,
dump,
for...next,
goto,
if...else...fi,
list,
print,
prompt,
return,
run,
save.

All calculations double precision.
Recursive function defining and calling.
Builtin functions include log, exp, sin, cos, atn, int, sqr, abs, rnd.
Escape to ED for complex program editing.

DC Interactive programmable desk calculator. Has named storage locations as well as con-
ventional stack for holding integers or programs.

Unlimited precision decimal arithmetic.
Appropriate treatment of decimal fractions.
Arbitrary input and output radices, in particular binary, octal, decimal and hexade-
cimal.
Reverse Polish operators:

+ – * /
remainder, power, square root,
load, store, duplicate, clear,
print, enter program text, execute.

BC A C-like interactive interface to the desk calculator DC.
All the capabilities of DC with a high-level syntax.
Arrays and recursive functions.
Immediate evaluation of expressions and evaluation of functions upon call.
Arbitrary precision elementary functions: exp, sin, cos, atan.
Go-to-less programming.

2.4. Macroprocessing

M4 A general purpose macroprocessor.
Stream-oriented, recognizes macros anywhere in text.
Syntax fits with functional syntax of most higher-level languages.
Can evaluate integer arithmetic expressions.

2.5. Compiler-compilers

YACC An LR(1)-based compiler writing system. During execution of resulting parsers, arbi-
trary C functions may be called to do code generation or semantic actions.

BNF syntax specifications.
Precedence relations.
Accepts formally ambiguous grammars with non-BNF resolution rules.

LEX Generator of lexical analyzers. Arbitrary C functions may be called upon isolation of
each lexical token.

- 12 -

Full regular expression, plus left and right context dependence.
Resulting lexical analysers interface cleanly with YACC parsers.

3. Text Processing

3.1. Document Preparation

ED Interactive context editor. Random access to all lines of a file.
Find lines by number or pattern. Patterns may include: specified characters, don’t
care characters, choices among characters, repetitions of these constructs, beginning
of line, end of line.
Add, delete, change, copy, move or join lines.
Permute or split contents of a line.
Replace one or all instances of a pattern within a line.
Combine or split files.
Escape to Shell (command language) during editing.
Do any of above operations on every pattern-selected line in a given range.
Optional encryption for extra security.

PTX Make a permuted (key word in context) index.

SPELL Look for spelling errors by comparing each word in a document against a word list.
25,000-word list includes proper names.
Handles common prefixes and suffixes.
Collects words to help tailor local spelling lists.

LOOK Search for words in dictionary that begin with specified prefix.

TYPO Look for spelling errors by a statistical technique; not limited to English.

CRYPT Encrypt and decrypt files for security.

3.2. Document Formatting

ROFF A typesetting program for terminals. Easy for nontechnical people to learn, and good
for simple documents. Input consists of data lines intermixed with control lines, such
as

ROFF is deemed to be obsolete;
it is intended only for casual use.

Justification of either or both margins.
Automatic hyphenation.
Generalized running heads and feet, with even-odd page capability, numbering, etc.
Definable macros for frequently used control sequences (no substitutable arguments).
All 4 margins and page size dynamically adjustable.
Hanging indents and one-line indents.
Absolute and relative parameter settings.
Optional legal-style numbering of output lines.
Multiple file capability.
Not usable as a filter.

TROFF

NROFF Advanced typesetting. TROFF drives a Graphic Systems phototypesetter; NROFF
drives ascii terminals of all types. This summary was typeset using TROFF. TROFF
and NROFF style is similar to ROFF, but they are capable of much more elaborate
feats of formatting, when appropriately programmed. TROFF and NROFF accept the

- 13 -

same input language.
All ROFF capabilities available or definable.
Completely definable page format keyed to dynamically planted ‘‘interrupts’’ at
specified lines.
Maintains several separately definable typesetting environments (e.g., one for body
text, one for footnotes, and one for unusually elaborate headings).
Arbitrary number of output pools can be combined at will.
Macros with substitutable arguments, and macros invocable in mid-line.
Computation and printing of numerical quantities.
Conditional execution of macros.
Tabular layout facility.
Positions expressible in inches, centimeters, ems, points, machine units or arithmetic
combinations thereof.
Access to character-width computation for unusually difficult layout problems.
Overstrikes, built-up brackets, horizontal and vertical line drawing.
Dynamic relative or absolute positioning and size selection, globally or at the char-
acter level.
Can exploit the characteristics of the terminal being used, for approximating special
characters, reverse motions, proportional spacing, etc.

The Graphic Systems typesetter has a vocabulary of several 102-character fonts (4 simultaneously) in 15
sizes. TROFF provides terminal output for rough sampling of the product.

NROFF will produce multicolumn output on terminals capable of reverse line feed, or through the post-
processor COL.

High programming skill is required to exploit the formatting capabilities of TROFF and NROFF,
although unskilled personnel can easily be trained to enter documents according to canned formats such
as those provided by MS, below. TROFF and EQN are essentially identical to NROFF and NEQN so it
is usually possible to define interchangeable formats to produce approximate proof copy on terminals
before actual typesetting. The preprocessors MS, TBL, and REFER are fully compatible with TROFF
and NROFF.

MS A standardized manuscript layout package for use with NROFF/TROFF. This docu-
ment was formatted with MS.

Page numbers and draft dates.
Automatically numbered subheads.
Footnotes.
Single or double column.
Paragraphing, display and indentation.
Numbered equations.

EQN A mathematical typesetting preprocessor for TROFF. Translates easily readable formu-
las, either in-line or displayed, into detailed typesetting instructions. Formulas are
written in a style like this:

sigma sup 2 ˜=˜ 1 over N sum from i=1 to N (x sub i – x bar) sup 2

which produces:

σ2 =
N
1_ _

i =1
Σ
N

(xi −x)2

Automatic calculation of size changes for subscripts, sub-subscripts, etc.
Full vocabulary of Greek letters and special symbols, such as ‘gamma’, ‘GAMMA’,
‘integral’.

- 14 -

Automatic calculation of large bracket sizes.
Vertical ‘‘piling’’ of formulae for matrices, conditional alternatives, etc.
Integrals, sums, etc., with arbitrarily complex limits.
Diacriticals: dots, double dots, hats, bars, etc.
Easily learned by nonprogrammers and mathematical typists.

NEQN A version of EQN for NROFF; accepts the same input language. Prepares formulas
for display on any terminal that NROFF knows about, for example, those based on
Diablo printing mechanism.

Same facilities as EQN within graphical capability of terminal.

TBL A preprocessor for NROFF/TROFF that translates simple descriptions of table layouts
and contents into detailed typesetting instructions.

Computes column widths.
Handles left- and right-justified columns, centered columns and decimal-point align-
ment.
Places column titles.
Table entries can be text, which is adjusted to fit.
Can box all or parts of table.

REFER Fills in bibliographic citations in a document from a data base (not supplied).
References may be printed in any style, as they occur or collected at the end.
May be numbered sequentially, by name of author, etc.

TC Simulate Graphic Systems typesetter on Tektronix 4014 scope. Useful for checking
TROFF page layout before typesetting.

GREEK Fancy printing on Diablo-mechanism terminals like DASI-300 and DASI-450, and on
Tektronix 4014.

Gives half-line forward and reverse motions.
Approximates Greek letters and other special characters by overstriking.

COL Canonicalize files with reverse line feeds for one-pass printing.

DEROFF Remove all TROFF commands from input.

CHECKEQ Check document for possible errors in EQN usage.

4. Information Handling

SORT Sort or merge ASCII files line-by-line. No limit on input size.
Sort up or down.
Sort lexicographically or on numeric key.
Multiple keys located by delimiters or by character position.
May sort upper case together with lower into dictionary order.
Optionally suppress duplicate data.

TSORT Topological sort — converts a partial order into a total order.

UNIQ Collapse successive duplicate lines in a file into one line.
Publish lines that were originally unique, duplicated, or both.
May give redundancy count for each line.

TR Do one-to-one character translation according to an arbitrary code.
May coalesce selected repeated characters.
May delete selected characters.

DIFF Report line changes, additions and deletions necessary to bring two files into agree-
ment.

- 15 -

May produce an editor script to convert one file into another.
A variant compares two new versions against one old one.

COMM Identify common lines in two sorted files. Output in up to 3 columns shows lines
present in first file only, present in both, and/or present in second only.

JOIN Combine two files by joining records that have identical keys.

GREP Print all lines in a file that satisfy a pattern as used in the editor ED.
May print all lines that fail to match.
May print count of hits.
May print first hit in each file.

LOOK Binary search in sorted file for lines with specified prefix.

WC Count the lines, ‘‘words’’ (blank-separated strings) and characters in a file.

SED Stream-oriented version of ED. Can perform a sequence of editing operations on each
line of an input stream of unbounded length.

Lines may be selected by address or range of addresses.
Control flow and conditional testing.
Multiple output streams.
Multi-line capability.

AWK Pattern scanning and processing language. Searches input for patterns, and performs
actions on each line of input that satisfies the pattern.

Patterns include regular expressions, arithmetic and lexicographic conditions,
boolean combinations and ranges of these.
Data treated as string or numeric as appropriate.
Can break input into fields; fields are variables.
Variables and arrays (with non-numeric subscripts).
Full set of arithmetic operators and control flow.
Multiple output streams to files and pipes.
Output can be formatted as desired.
Multi-line capabilities.

5. Graphics

The programs in this section are predominantly intended for use with Tektronix 4014 storage scopes.

GRAPH Prepares a graph of a set of input numbers.
Input scaled to fit standard plotting area.
Abscissae may be supplied automatically.
Graph may be labeled.
Control over grid style, line style, graph orientation, etc.

SPLINE Provides a smooth curve through a set of points intended for GRAPH.

PLOT A set of filters for printing graphs produced by GRAPH and other programs on various
terminals. Filters provided for 4014, DASI terminals, Versatec printer/plotter.

6. Novelties, Games, and Things That Didn’t Fit Anywhere Else

BACKGAMMON
A player of modest accomplishment.

CHESS Plays good class D chess.

- 16 -

CHECKERS Ditto, for checkers.

BCD Converts ascii to card-image form.

PPT Converts ascii to paper tape form.

BJ A blackjack dealer.

CUBIC An accomplished player of 4×4×4 tic-tac-toe.

MAZE Constructs random mazes for you to solve.

MOO A fascinating number-guessing game.

CAL Print a calendar of specified month and year.

BANNER Print output in huge letters.

CHING The I Ching. Place your own interpretation on the output.

FORTUNE Presents a random fortune cookie on each invocation. Limited jar of cookies included.

UNITS Convert amounts between different scales of measurement. Knows hundreds of units.
For example, how many km/sec is a parsec/megayear?

TTT A tic-tac-toe program that learns. It never makes the same mistake twice.

ARITHMETIC
Speed and accuracy test for number facts.

FACTOR Factor large integers.

QUIZ Test your knowledge of Shakespeare, Presidents, capitals, etc.

WUMP Hunt the wumpus, thrilling search in a dangerous cave.

REVERSI A two person board game, isomorphic to Othello.

HANGMAN Word-guessing game. Uses the dictionary supplied with SPELL.

FISH Children’s card-guessing game.

The UNIX Time-Sharing System*

D. M. Ritchie and K. Thompson

ABSTRACT

UNIX† is a general-purpose, multi-user, interactive operating system for the larger
Digital Equipment Corporation PDP-11 and the Interdata 8/32 computers. It offers a
number of features seldom found even in larger operating systems, including

i A hierarchical file system incorporating demountable volumes,

ii Compatible file, device, and inter-process I/O,

iii The ability to initiate asynchronous processes,

iv System command language selectable on a per-user basis,

v Over 100 subsystems including a dozen languages,

vi High degree of portability.

This paper discusses the nature and implementation of the file system and of the user
command interface.

1. INTRODUCTION

There have been four versions of the UNIX time-sharing system. The earliest (circa 1969-70) ran
on the Digital Equipment Corporation PDP-7 and -9 computers. The second version ran on the unpro-
tected PDP-11/20 computer. The third incorporated multiprogramming and ran on the PDP-11/34, /40,
/45, /60, and /70 computers; it is the one described in the previously published version of this paper, and
is also the most widely used today. This paper describes only the fourth, current system that runs on the
PDP-11/70 and the Interdata 8/32 computers. In fact, the differences among the various systems is rather
small; most of the revisions made to the originally published version of this paper, aside from those con-
cerned with style, had to do with details of the implementation of the file system.

Since PDP-11 UNIX became operational in February, 1971, over 600 installations have been put into
service. Most of them are engaged in applications such as computer science education, the preparation
and formatting of documents and other textual material, the collection and processing of trouble data
from various switching machines within the Bell System, and recording and checking telephone service
orders. Our own installation is used mainly for research in operating systems, languages, computer net-
works, and other topics in computer science, and also for document preparation.

Perhaps the most important achievement of UNIX is to demonstrate that a powerful operating sys-
tem for interactive use need not be expensive either in equipment or in human effort: it can run on
hardware costing as little as $40,000, and less than two man-years were spent on the main system
software. We hope, however, that users find that the most important characteristics of the system are its
simplicity, elegance, and ease of use.

Besides the operating system proper, some major programs available under UNIX are

* Copyright 1974, Association for Computing Machinery, Inc., reprinted by permission. This is a revised version of an
article that appeared in Communications of the ACM, 17, No. 7 (July 1974), pp. 365-375. That article was a revised
version of a paper presented at the Fourth ACM Symposium on Operating Systems Principles, IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, October 15-17, 1973.
†UNIX is a Trademark of Bell Laboratories.

- 2 -

C compiler
Text editor based on QED1

Assembler, linking loader, symbolic debugger
Phototypesetting and equation setting programs23

Dozens of languages including Fortran 77, Basic, Snobol, APL, Algol 68, M6, TMG, Pascal

There is a host of maintenance, utility, recreation and novelty programs, all written locally. The UNIX

user community, which numbers in the thousands, has contributed many more programs and languages.
It is worth noting that the system is totally self-supporting. All UNIX software is maintained on the sys-
tem; likewise, this paper and all other documents in this issue were generated and formatted by the UNIX

editor and text formatting programs.

II. HARDWARE AND SOFTWARE ENVIRONMENT

The PDP-11/70 on which the Research UNIX system is installed is a 16-bit word (8-bit byte) com-
puter with 768K bytes of core memory; the system kernel occupies 90K bytes about equally divided
between code and data tables. This system, however, includes a very large number of device drivers and
enjoys a generous allotment of space for I/O buffers and system tables; a minimal system capable of
running the software mentioned above can require as little as 96K bytes of core altogether. There are
even larger installations; see the description of the PWB/UNIX systems,45 for example. There are also
much smaller, though somewhat restricted, versions of the system.6

Our own PDP-11 has two 200-Mb moving-head disks for file system storage and swapping. There
are 20 variable-speed communications interfaces attached to 300- and 1200-baud data sets, and an addi-
tional 12 communication lines hard-wired to 9600-baud terminals and satellite computers. There are
also several 2400- and 4800-baud synchronous communication interfaces used for machine-to-machine
file transfer. Finally, there is a variety of miscellaneous devices including nine-track magnetic tape, a
line printer, a voice synthesizer, a phototypesetter, a digital switching network, and a chess machine.

The preponderance of UNIX software is written in the abovementioned C language.7 Early versions
of the operating system were written in assembly language, but during the summer of 1973, it was
rewritten in C. The size of the new system was about one-third greater than that of the old. Since the
new system not only became much easier to understand and to modify but also included many func-
tional improvements, including multiprogramming and the ability to share reentrant code among several
user programs, we consider this increase in size quite acceptable.

III. THE FILE SYSTEM

The most important role of the system is to provide a file system. From the point of view of the
user, there are three kinds of files: ordinary disk files, directories, and special files.

3.1 Ordinary files

A file contains whatever information the user places on it, for example, symbolic or binary
(object) programs. No particular structuring is expected by the system. A file of text consists simply of
a string of characters, with lines demarcated by the newline character. Binary programs are sequences
of words as they will appear in core memory when the program starts executing. A few user programs
manipulate files with more structure; for example, the assembler generates, and the loader expects, an
object file in a particular format. However, the structure of files is controlled by the programs that use
them, not by the system.

3.2 Directories

Directories provide the mapping between the names of files and the files themselves, and thus
induce a structure on the file system as a whole. Each user has a directory of his own files; he may also
create subdirectories to contain groups of files conveniently treated together. A directory behaves
exactly like an ordinary file except that it cannot be written on by unprivileged programs, so that the
system controls the contents of directories. However, anyone with appropriate permission may read a
directory just like any other file.

- 3 -

The system maintains several directories for its own use. One of these is the root directory. All
files in the system can be found by tracing a path through a chain of directories until the desired file is
reached. The starting point for such searches is often the root. Other system directories contain all the
programs provided for general use; that is, all the commands. As will be seen, however, it is by no
means necessary that a program reside in one of these directories for it to be executed.

Files are named by sequences of 14 or fewer characters. When the name of a file is specified to
the system, it may be in the form of a path name, which is a sequence of directory names separated by
slashes, ‘‘/ ’’, and ending in a file name. If the sequence begins with a slash, the search begins in the
root directory. The name /alpha/beta/gamma causes the system to search the root for directory alpha,
then to search alpha for beta, finally to find gamma in beta. gamma may be an ordinary file, a direc-
tory, or a special file. As a limiting case, the name ‘‘/ ’’ refers to the root itself.

A path name not starting with ‘‘/ ’’ causes the system to begin the search in the user’s current
directory. Thus, the name alpha/beta specifies the file named beta in subdirectory alpha of the current
directory. The simplest kind of name, for example, alpha, refers to a file that itself is found in the
current directory. As another limiting case, the null file name refers to the current directory.

The same non-directory file may appear in several directories under possibly different names.
This feature is called linking; a directory entry for a file is sometimes called a link. The UNIX system
differs from other systems in which linking is permitted in that all links to a file have equal status. That
is, a file does not exist within a particular directory; the directory entry for a file consists merely of its
name and a pointer to the information actually describing the file. Thus a file exists independently of
any directory entry, although in practice a file is made to disappear along with the last link to it.

Each directory always has at least two entries. The name ‘‘ . ’’ in each directory refers to the
directory itself. Thus a program may read the current directory under the name ‘‘ . ’’ without knowing
its complete path name. The name ‘‘ . . ’’ by convention refers to the parent of the directory in which it
appears, that is, to the directory in which it was created.

The directory structure is constrained to have the form of a rooted tree. Except for the special
entries ‘‘ . ’’ and ‘‘ . . ’’, each directory must appear as an entry in exactly one other directory, which is
its parent. The reason for this is to simplify the writing of programs that visit subtrees of the directory
structure, and more important, to avoid the separation of portions of the hierarchy. If arbitrary links to
directories were permitted, it would be quite difficult to detect when the last connection from the root to
a directory was severed.

3.3 Special files

Special files constitute the most unusual feature of the UNIX file system. Each supported I/O dev-
ice is associated with at least one such file. Special files are read and written just like ordinary disk
files, but requests to read or write result in activation of the associated device. An entry for each special
file resides in directory /dev, although a link may be made to one of these files just as it may to an ordi-
nary file. Thus, for example, to write on a magnetic tape one may write on the file /dev/mt. Special
files exist for each communication line, each disk, each tape drive, and for physical main memory. Of
course, the active disks and the memory special file are protected from indiscriminate access.

There is a threefold advantage in treating I/O devices this way: file and device I/O are as similar
as possible; file and device names have the same syntax and meaning, so that a program expecting a file
name as a parameter can be passed a device name; finally, special files are subject to the same protection
mechanism as regular files.

3.4 Removable file systems

Although the root of the file system is always stored on the same device, it is not necessary that
the entire file system hierarchy reside on this device. There is a mount system request with two argu-
ments: the name of an existing ordinary file, and the name of a special file whose associated storage
volume (e.g., a disk pack) should have the structure of an independent file system containing its own
directory hierarchy. The effect of mount is to cause references to the heretofore ordinary file to refer
instead to the root directory of the file system on the removable volume. In effect, mount replaces a

- 4 -

leaf of the hierarchy tree (the ordinary file) by a whole new subtree (the hierarchy stored on the remov-
able volume). After the mount, there is virtually no distinction between files on the removable volume
and those in the permanent file system. In our installation, for example, the root directory resides on a
small partition of one of our disk drives, while the other drive, which contains the user’s files, is
mounted by the system initialization sequence. A mountable file system is generated by writing on its
corresponding special file. A utility program is available to create an empty file system, or one may
simply copy an existing file system.

There is only one exception to the rule of identical treatment of files on different devices: no link
may exist between one file system hierarchy and another. This restriction is enforced so as to avoid the
elaborate bookkeeping that would otherwise be required to assure removal of the links whenever the
removable volume is dismounted.

3.5 Protection

Although the access control scheme is quite simple, it has some unusual features. Each user of
the system is assigned a unique user identification number. When a file is created, it is marked with the
user ID of its owner. Also given for new files is a set of ten protection bits. Nine of these specify
independently read, write, and execute permission for the owner of the file, for other members of his
group, and for all remaining users.

If the tenth bit is on, the system will temporarily change the user identification (hereafter, user ID)
of the current user to that of the creator of the file whenever the file is executed as a program. This
change in user ID is effective only during the execution of the program that calls for it. The set-user-ID

feature provides for privileged programs that may use files inaccessible to other users. For example, a
program may keep an accounting file that should neither be read nor changed except by the program
itself. If the set-user-ID bit is on for the program, it may access the file although this access might be
forbidden to other programs invoked by the given program’s user. Since the actual user ID of the
invoker of any program is always available, set-user-ID programs may take any measures desired to
satisfy themselves as to their invoker’s credentials. This mechanism is used to allow users to execute
the carefully written commands that call privileged system entries. For example, there is a system entry
invokable only by the ‘‘super-user’’ (below) that creates an empty directory. As indicated above, direc-
tories are expected to have entries for ‘‘ . ’’ and ‘‘ . . ’’. The command which creates a directory is
owned by the super-user and has the set-user-ID bit set. After it checks its invoker’s authorization to
create the specified directory, it creates it and makes the entries for ‘‘ . ’’ and ‘‘ . . ’’.

Because anyone may set the set-user-ID bit on one of his own files, this mechanism is generally
available without administrative intervention. For example, this protection scheme easily solves the MOO

accounting problem posed by ‘‘Aleph-null.’’8

The system recognizes one particular user ID (that of the ‘‘super-user’’) as exempt from the usual
constraints on file access; thus (for example), programs may be written to dump and reload the file sys-
tem without unwanted interference from the protection system.

3.6 I/O calls

The system calls to do I/O are designed to eliminate the differences between the various devices
and styles of access. There is no distinction between ‘‘random’’ and ‘‘sequential’’ I/O, nor is any logi-
cal record size imposed by the system. The size of an ordinary file is determined by the number of
bytes written on it; no predetermination of the size of a file is necessary or possible.

To illustrate the essentials of I/O, some of the basic calls are summarized below in an anonymous
language that will indicate the required parameters without getting into the underlying complexities.
Each call to the system may potentially result in an error return, which for simplicity is not represented
in the calling sequence.

To read or write a file assumed to exist already, it must be opened by the following call:

filep = open (name, flag)

where name indicates the name of the file. An arbitrary path name may be given. The flag argument

- 5 -

indicates whether the file is to be read, written, or ‘‘updated,’’ that is, read and written simultaneously.

The returned value filep is called a file descriptor. It is a small integer used to identify the file in
subsequent calls to read, write, or otherwise manipulate the file.

To create a new file or completely rewrite an old one, there is a create system call that creates the
given file if it does not exist, or truncates it to zero length if it does exist; create also opens the new file
for writing and, like open, returns a file descriptor.

The file system maintains no locks visible to the user, nor is there any restriction on the number
of users who may have a file open for reading or writing. Although it is possible for the contents of a
file to become scrambled when two users write on it simultaneously, in practice difficulties do not arise.
We take the view that locks are neither necessary nor sufficient, in our environment, to prevent interfer-
ence between users of the same file. They are unnecessary because we are not faced with large, single-
file data bases maintained by independent processes. They are insufficient because locks in the ordinary
sense, whereby one user is prevented from writing on a file that another user is reading, cannot prevent
confusion when, for example, both users are editing a file with an editor that makes a copy of the file
being edited.

There are, however, sufficient internal interlocks to maintain the logical consistency of the file sys-
tem when two users engage simultaneously in activities such as writing on the same file, creating files in
the same directory, or deleting each other’s open files.

Except as indicated below, reading and writing are sequential. This means that if a particular byte
in the file was the last byte written (or read), the next I/O call implicitly refers to the immediately fol-
lowing byte. For each open file there is a pointer, maintained inside the system, that indicates the next
byte to be read or written. If n bytes are read or written, the pointer advances by n bytes.

Once a file is open, the following calls may be used:

n = read (filep, buffer, count)
n = write (filep, buffer, count)

Up to count bytes are transmitted between the file specified by filep and the byte array specified by
buffer. The returned value n is the number of bytes actually transmitted. In the write case, n is the
same as count except under exceptional conditions, such as I/O errors or end of physical medium on
special files; in a read, however, n may without error be less than count. If the read pointer is so near
the end of the file that reading count characters would cause reading beyond the end, only sufficient
bytes are transmitted to reach the end of the file; also, typewriter-like terminals never return more than
one line of input. When a read call returns with n equal to zero, the end of the file has been reached.
For disk files this occurs when the read pointer becomes equal to the current size of the file. It is possi-
ble to generate an end-of-file from a terminal by use of an escape sequence that depends on the device
used.

Bytes written affect only those parts of a file implied by the position of the write pointer and the
count; no other part of the file is changed. If the last byte lies beyond the end of the file, the file is
made to grow as needed.

To do random (direct-access) I/O it is only necessary to move the read or write pointer to the
appropriate location in the file.

location = lseek (filep, offset, base)

The pointer associated with filep is moved to a position offset bytes from the beginning of the file, from
the current position of the pointer, or from the end of the file, depending on base. offset may be nega-
tive. For some devices (e.g., paper tape and terminals) seek calls are ignored. The actual offset from
the beginning of the file to which the pointer was moved is returned in location.

There are several additional system entries having to do with I/O and with the file system that will
not be discussed. For example: close a file, get the status of a file, change the protection mode or the
owner of a file, create a directory, make a link to an existing file, delete a file.

- 6 -

IV. IMPLEMENTATION OF THE FILE SYSTEM

As mentioned in Section 3.2 above, a directory entry contains only a name for the associated file
and a pointer to the file itself. This pointer is an integer called the i-number (for index number) of the
file. When the file is accessed, its i-number is used as an index into a system table (the i-list) stored in
a known part of the device on which the directory resides. The entry found thereby (the file’s i-node)
contains the description of the file:

i the user and group-ID of its owner

ii its protection bits

iii the physical disk or tape addresses for the file contents

iv its size

v time of creation, last use, and last modification

vi the number of links to the file, that is, the number of times it appears in a directory

vii a code indicating whether the file is a directory, an ordinary file, or a special file.

The purpose of an open or create system call is to turn the path name given by the user into an i-
number by searching the explicitly or implicitly named directories. Once a file is open, its device, i-
number, and read/write pointer are stored in a system table indexed by the file descriptor returned by the
open or create. Thus, during a subsequent call to read or write the file, the descriptor may be easily
related to the information necessary to access the file.

When a new file is created, an i-node is allocated for it and a directory entry is made that contains
the name of the file and the i-node number. Making a link to an existing file involves creating a direc-
tory entry with the new name, copying the i-number from the original file entry, and incrementing the
link-count field of the i-node. Removing (deleting) a file is done by decrementing the link-count of the
i-node specified by its directory entry and erasing the directory entry. If the link-count drops to 0, any
disk blocks in the file are freed and the i-node is de-allocated.

The space on all disks that contain a file system is divided into a number of 512-byte blocks logi-
cally addressed from 0 up to a limit that depends on the device. There is space in the i-node of each
file for 13 device addresses. For nonspecial files, the first 10 device addresses point at the first 10
blocks of the file. If the file is larger than 10 blocks, the 11 device address points to an indirect block
containing up to 128 addresses of additional blocks in the file. Still larger files use the twelfth device
address of the i-node to point to a double-indirect block naming 128 indirect blocks, each pointing to
128 blocks of the file. If required, the thirteenth device address is a triple-indirect block. Thus files
may conceptually grow to [(10+128+1282+1283).512] bytes. Once opened, bytes numbered below 5120
can be read with a single disk access; bytes in the range 5120 to 70,656 require two accesses; bytes in
the range 70,656 to 8,459,264 require three accesses; bytes from there to the largest file (1,082,201,088)
require four accesses. In practice, a device cache mechanism (see below) proves effective in eliminating
most of the indirect fetches.

The foregoing discussion applies to ordinary files. When an I/O request is made to a file whose
i-node indicates that it is special, the last 12 device address words are immaterial, and the first specifies
an internal device name, which is interpreted as a pair of numbers representing, respectively, a device
type and subdevice number. The device type indicates which system routine will deal with I/O on that
device; the subdevice number selects, for example, a disk drive attached to a particular controller or one
of several similar terminal interfaces.

In this environment, the implementation of the mount system call (Section 3.4) is quite straight-
forward. mount maintains a system table whose argument is the i-number and device name of the ordi-
nary file specified during the mount, and whose corresponding value is the device name of the indicated
special file. This table is searched for each i-number/device pair that turns up while a path name is
being scanned during an open or create; if a match is found, the i-number is replaced by the i-number
of the root directory and the device name is replaced by the table value.

To the user, both reading and writing of files appear to be synchronous and unbuffered. That is,
immediately after return from a read call the data are available; conversely, after a write the user’s

- 7 -

workspace may be reused. In fact, the system maintains a rather complicated buffering mechanism that
reduces greatly the number of I/O operations required to access a file. Suppose a write call is made
specifying transmission of a single byte. The system will search its buffers to see whether the affected
disk block currently resides in main memory; if not, it will be read in from the device. Then the
affected byte is replaced in the buffer and an entry is made in a list of blocks to be written. The return
from the write call may then take place, although the actual I/O may not be completed until a later time.
Conversely, if a single byte is read, the system determines whether the secondary storage block in which
the byte is located is already in one of the system’s buffers; if so, the byte can be returned immediately.
If not, the block is read into a buffer and the byte picked out.

The system recognizes when a program has made accesses to sequential blocks of a file, and asyn-
chronously pre-reads the next block. This significantly reduces the running time of most programs while
adding little to system overhead.

A program that reads or writes files in units of 512 bytes has an advantage over a program that
reads or writes a single byte at a time, but the gain is not immense; it comes mainly from the avoidance
of system overhead. If a program is used rarely or does no great volume of I/O, it may quite reasonably
read and write in units as small as it wishes.

The notion of the i-list is an unusual feature of UNIX. In practice, this method of organizing the
file system has proved quite reliable and easy to deal with. To the system itself, one of its strengths is
the fact that each file has a short, unambiguous name related in a simple way to the protection, address-
ing, and other information needed to access the file. It also permits a quite simple and rapid algorithm
for checking the consistency of a file system, for example, verification that the portions of each device
containing useful information and those free to be allocated are disjoint and together exhaust the space
on the device. This algorithm is independent of the directory hierarchy, because it need only scan the
linearly organized i-list. At the same time the notion of the i-list induces certain peculiarities not found
in other file system organizations. For example, there is the question of who is to be charged for the
space a file occupies, because all directory entries for a file have equal status. Charging the owner of a
file is unfair in general, for one user may create a file, another may link to it, and the first user may
delete the file. The first user is still the owner of the file, but it should be charged to the second user.
The simplest reasonably fair algorithm seems to be to spread the charges equally among users who have
links to a file. Many installations avoid the issue by not charging any fees at all.

V. PROCESSES AND IMAGES

An image is a computer execution environment. It includes a memory image, general register
values, status of open files, current directory and the like. An image is the current state of a pseudo-
computer.

A process is the execution of an image. While the processor is executing on behalf of a process,
the image must reside in main memory; during the execution of other processes it remains in main
memory unless the appearance of an active, higher-priority process forces it to be swapped out to the
disk.

The user-memory part of an image is divided into three logical segments. The program text seg-
ment begins at location 0 in the virtual address space. During execution, this segment is write-protected
and a single copy of it is shared among all processes executing the same program. At the first hardware
protection byte boundary above the program text segment in the virtual address space begins a non-
shared, writable data segment, the size of which may be extended by a system call. Starting at the
highest address in the virtual address space is a stack segment, which automatically grows downward as
the stack pointer fluctuates.

5.1 Processes

Except while the system is bootstrapping itself into operation, a new process can come into
existence only by use of the fork system call:

processid = fork ()

- 8 -

When fork is executed, the process splits into two independently executing processes. The two
processes have independent copies of the original memory image, and share all open files. The new
processes differ only in that one is considered the parent process: in the parent, the returned processid
actually identifies the child process and is never 0, while in the child, the returned value is always 0.

Because the values returned by fork in the parent and child process are distinguishable, each pro-
cess may determine whether it is the parent or child.

5.2 Pipes

Processes may communicate with related processes using the same system read and write calls
that are used for file-system I/O. The call:

filep = pipe ()

returns a file descriptor filep and creates an inter-process channel called a pipe. This channel, like other
open files, is passed from parent to child process in the image by the fork call. A read using a pipe file
descriptor waits until another process writes using the file descriptor for the same pipe. At this point,
data are passed between the images of the two processes. Neither process need know that a pipe, rather
than an ordinary file, is involved.

Although inter-process communication via pipes is a quite valuable tool (see Section 6.2), it is not
a completely general mechanism, because the pipe must be set up by a common ancestor of the
processes involved.

5.3 Execution of programs

Another major system primitive is invoked by

execute (file, arg1, arg2, . . . , argn)

which requests the system to read in and execute the program named by file, passing it string arguments
arg1 , arg2 , . . . , argn. All the code and data in the process invoking execute is replaced from the file,
but open files, current directory, and inter-process relationships are unaltered. Only if the call fails, for
example because file could not be found or because its execute-permission bit was not set, does a return
take place from the execute primitive; it resembles a ‘‘jump’’ machine instruction rather than a subrou-
tine call.

5.4 Process synchronization

Another process control system call:

processid = wait (status)

causes its caller to suspend execution until one of its children has completed execution. Then wait
returns the processid of the terminated process. An error return is taken if the calling process has no
descendants. Certain status from the child process is also available.

5.5 Termination

Lastly:

exit (status)

terminates a process, destroys its image, closes its open files, and generally obliterates it. The parent is
notified through the wait primitive, and status is made available to it. Processes may also terminate as
a result of various illegal actions or user-generated signals (Section VII below).

VI. THE SHELL

For most users, communication with the system is carried on with the aid of a program called the
shell. The shell is a command-line interpreter: it reads lines typed by the user and interprets them as
requests to execute other programs. (The shell is described fully elsewhere,9 so this section will discuss

- 9 -

only the theory of its operation.) In simplest form, a command line consists of the command name fol-
lowed by arguments to the command, all separated by spaces:

command arg1 arg2 . . . argn

The shell splits up the command name and the arguments into separate strings. Then a file with name
command is sought; command may be a path name including the ‘‘/’’ character to specify any file in
the system. If command is found, it is brought into memory and executed. The arguments collected by
the shell are accessible to the command. When the command is finished, the shell resumes its own exe-
cution, and indicates its readiness to accept another command by typing a prompt character.

If file command cannot be found, the shell generally prefixes a string such as / bin / to command
and attempts again to find the file. Directory / bin contains commands intended to be generally used.
(The sequence of directories to be searched may be changed by user request.)

6.1 Standard I/O

The discussion of I/O in Section III above seems to imply that every file used by a program must
be opened or created by the program in order to get a file descriptor for the file. Programs executed by
the shell, however, start off with three open files with file descriptors 0, 1, and 2. As such a program
begins execution, file 1 is open for writing, and is best understood as the standard output file. Except
under circumstances indicated below, this file is the user’s terminal. Thus programs that wish to write
informative information ordinarily use file descriptor 1. Conversely, file 0 starts off open for reading,
and programs that wish to read messages typed by the user read this file.

The shell is able to change the standard assignments of these file descriptors from the user’s termi-
nal printer and keyboard. If one of the arguments to a command is prefixed by ‘‘>’’, file descriptor 1
will, for the duration of the command, refer to the file named after the ‘‘>’’. For example:

ls

ordinarily lists, on the typewriter, the names of the files in the current directory. The command:

ls >there

creates a file called there and places the listing there. Thus the argument >there means ‘‘place output
on there.’’ On the other hand:

ed

ordinarily enters the editor, which takes requests from the user via his keyboard. The command

ed <script

interprets script as a file of editor commands; thus <script means ‘‘take input from script.’’

Although the file name following ‘‘<’’ or ‘‘>’’ appears to be an argument to the command, in fact
it is interpreted completely by the shell and is not passed to the command at all. Thus no special coding
to handle I/O redirection is needed within each command; the command need merely use the standard
file descriptors 0 and 1 where appropriate.

File descriptor 2 is, like file 1, ordinarily associated with the terminal output stream. When an
output-diversion request with ‘‘>’’ is specified, file 2 remains attached to the terminal, so that commands
may produce diagnostic messages that do not silently end up in the output file.

6.2 Filters

An extension of the standard I/O notion is used to direct output from one command to the input of
another. A sequence of commands separated by vertical bars causes the shell to execute all the com-
mands simultaneously and to arrange that the standard output of each command be delivered to the stan-
dard input of the next command in the sequence. Thus in the command line:

ls  pr −2  opr

ls lists the names of the files in the current directory; its output is passed to pr, which paginates its input

- 10 -

with dated headings. (The argument ‘‘−2’’ requests double-column output.) Likewise, the output from
pr is input to opr; this command spools its input onto a file for off-line printing.

This procedure could have been carried out more clumsily by:

ls >temp1
pr −2 <temp1 >temp2
opr <temp2

followed by removal of the temporary files. In the absence of the ability to redirect output and input, a
still clumsier method would have been to require the ls command to accept user requests to paginate its
output, to print in multi-column format, and to arrange that its output be delivered off-line. Actually it
would be surprising, and in fact unwise for efficiency reasons, to expect authors of commands such as ls
to provide such a wide variety of output options.

A program such as pr which copies its standard input to its standard output (with processing) is
called a filter. Some filters that we have found useful perform character transliteration, selection of lines
according to a pattern, sorting of the input, and encryption and decryption.

6.3 Command separators; multitasking

Another feature provided by the shell is relatively straightforward. Commands need not be on dif-
ferent lines; instead they may be separated by semicolons:

ls; ed

will first list the contents of the current directory, then enter the editor.

A related feature is more interesting. If a command is followed by ‘‘&,’’ the shell will not wait
for the command to finish before prompting again; instead, it is ready immediately to accept a new com-
mand. For example:

as source >output &

causes source to be assembled, with diagnostic output going to output; no matter how long the assem-
bly takes, the shell returns immediately. When the shell does not wait for the completion of a com-
mand, the identification number of the process running that command is printed. This identification may
be used to wait for the completion of the command or to terminate it. The ‘‘&’’ may be used several
times in a line:

as source >output & ls >files &

does both the assembly and the listing in the background. In these examples, an output file other than
the terminal was provided; if this had not been done, the outputs of the various commands would have
been intermingled.

The shell also allows parentheses in the above operations. For example:

(date; ls) >x &

writes the current date and time followed by a list of the current directory onto the file x. The shell also
returns immediately for another request.

6.4 The shell as a command; command files

The shell is itself a command, and may be called recursively. Suppose file tryout contains the
lines:

as source
mv a.out testprog
testprog

The mv command causes the file a.out to be renamed testprog. a.out is the (binary) output of the
assembler, ready to be executed. Thus if the three lines above were typed on the keyboard, source
would be assembled, the resulting program renamed testprog, and testprog executed. When the lines

- 11 -

are in tryout, the command:

sh <tryout

would cause the shell sh to execute the commands sequentially.

The shell has further capabilities, including the ability to substitute parameters and to construct
argument lists from a specified subset of the file names in a directory. It also provides general condi-
tional and looping constructions.

6.5 Implementation of the shell

The outline of the operation of the shell can now be understood. Most of the time, the shell is
waiting for the user to type a command. When the newline character ending the line is typed, the
shell’s read call returns. The shell analyzes the command line, putting the arguments in a form
appropriate for execute. Then fork is called. The child process, whose code of course is still that of
the shell, attempts to perform an execute with the appropriate arguments. If successful, this will bring
in and start execution of the program whose name was given. Meanwhile, the other process resulting
from the fork, which is the parent process, waits for the child process to die. When this happens, the
shell knows the command is finished, so it types its prompt and reads the keyboard to obtain another
command.

Given this framework, the implementation of background processes is trivial; whenever a com-
mand line contains ‘‘&,’’ the shell merely refrains from waiting for the process that it created to execute
the command.

Happily, all of this mechanism meshes very nicely with the notion of standard input and output
files. When a process is created by the fork primitive, it inherits not only the memory image of its
parent but also all the files currently open in its parent, including those with file descriptors 0, 1, and 2.
The shell, of course, uses these files to read command lines and to write its prompts and diagnostics, and
in the ordinary case its children—the command programs—inherit them automatically. When an argu-
ment with ‘‘<’’ or ‘‘>’’ is given, however, the offspring process, just before it performs execute, makes
the standard I/O file descriptor (0 or 1, respectively) refer to the named file. This is easy because, by
agreement, the smallest unused file descriptor is assigned when a new file is opened (or created); it is
only necessary to close file 0 (or 1) and open the named file. Because the process in which the com-
mand program runs simply terminates when it is through, the association between a file specified after
‘‘<’’ or ‘‘>’’ and file descriptor 0 or 1 is ended automatically when the process dies. Therefore the shell
need not know the actual names of the files that are its own standard input and output, because it need
never reopen them.

Filters are straightforward extensions of standard I/O redirection with pipes used instead of files.

In ordinary circumstances, the main loop of the shell never terminates. (The main loop includes
the branch of the return from fork belonging to the parent process; that is, the branch that does a wait,
then reads another command line.) The one thing that causes the shell to terminate is discovering an
end-of-file condition on its input file. Thus, when the shell is executed as a command with a given
input file, as in:

sh <comfile

the commands in comfile will be executed until the end of comfile is reached; then the instance of the
shell invoked by sh will terminate. Because this shell process is the child of another instance of the
shell, the wait executed in the latter will return, and another command may then be processed.

6.6 Initialization

The instances of the shell to which users type commands are themselves children of another pro-
cess. The last step in the initialization of the system is the creation of a single process and the invoca-
tion (via execute) of a program called init. The role of init is to create one process for each terminal
channel. The various subinstances of init open the appropriate terminals for input and output on files 0,
1, and 2, waiting, if necessary, for carrier to be established on dial-up lines. Then a message is typed

- 12 -

out requesting that the user log in. When the user types a name or other identification, the appropriate
instance of init wakes up, receives the log-in line, and reads a password file. If the user’s name is
found, and if he is able to supply the correct password, init changes to the user’s default current direc-
tory, sets the process’s user ID to that of the person logging in, and performs an execute of the shell. At
this point, the shell is ready to receive commands and the logging-in protocol is complete.

Meanwhile, the mainstream path of init (the parent of all the subinstances of itself that will later
become shells) does a wait. If one of the child processes terminates, either because a shell found an end
of file or because a user typed an incorrect name or password, this path of init simply recreates the
defunct process, which in turn reopens the appropriate input and output files and types another log-in
message. Thus a user may log out simply by typing the end-of-file sequence to the shell.

6.7 Other programs as shell

The shell as described above is designed to allow users full access to the facilities of the system,
because it will invoke the execution of any program with appropriate protection mode. Sometimes,
however, a different interface to the system is desirable, and this feature is easily arranged for.

Recall that after a user has successfully logged in by supplying a name and password, init ordi-
narily invokes the shell to interpret command lines. The user’s entry in the password file may contain
the name of a program to be invoked after log-in instead of the shell. This program is free to interpret
the user’s messages in any way it wishes.

For example, the password file entries for users of a secretarial editing system might specify that
the editor ed is to be used instead of the shell. Thus when users of the editing system log in, they are
inside the editor and can begin work immediately; also, they can be prevented from invoking programs
not intended for their use. In practice, it has proved desirable to allow a temporary escape from the edi-
tor to execute the formatting program and other utilities.

Several of the games (e.g., chess, blackjack, 3D tic-tac-toe) available on the system illustrate a
much more severely restricted environment. For each of these, an entry exists in the password file
specifying that the appropriate game-playing program is to be invoked instead of the shell. People who
log in as a player of one of these games find themselves limited to the game and unable to investigate
the (presumably more interesting) offerings of the UNIX system as a whole.

VII. TRAPS

The PDP-11 hardware detects a number of program faults, such as references to non-existent
memory, unimplemented instructions, and odd addresses used where an even address is required. Such
faults cause the processor to trap to a system routine. Unless other arrangements have been made, an
illegal action causes the system to terminate the process and to write its image on file core in the current
directory. A debugger can be used to determine the state of the program at the time of the fault.

Programs that are looping, that produce unwanted output, or about which the user has second
thoughts may be halted by the use of the interrupt signal, which is generated by typing the ‘‘delete’’
character. Unless special action has been taken, this signal simply causes the program to cease execu-
tion without producing a core file. There is also a quit signal used to force an image file to be pro-
duced. Thus programs that loop unexpectedly may be halted and the remains inspected without prear-
rangement.

The hardware-generated faults and the interrupt and quit signals can, by request, be either ignored
or caught by a process. For example, the shell ignores quits to prevent a quit from logging the user out.
The editor catches interrupts and returns to its command level. This is useful for stopping long printouts
without losing work in progress (the editor manipulates a copy of the file it is editing). In systems
without floating-point hardware, unimplemented instructions are caught and floating-point instructions
are interpreted.

- 13 -

VIII. PERSPECTIVE

Perhaps paradoxically, the success of the UNIX system is largely due to the fact that it was not
designed to meet any predefined objectives. The first version was written when one of us (Thompson),
dissatisfied with the available computer facilities, discovered a little-used PDP-7 and set out to create a
more hospitable environment. This (essentially personal) effort was sufficiently successful to gain the
interest of the other author and several colleagues, and later to justify the acquisition of the PDP-11/20,
specifically to support a text editing and formatting system. When in turn the 11/20 was outgrown, the
system had proved useful enough to persuade management to invest in the PDP-11/45, and later in the
PDP-11/70 and Interdata 8/32 machines, upon which it developed to its present form. Our goals
throughout the effort, when articulated at all, have always been to build a comfortable relationship with
the machine and to explore ideas and inventions in operating systems and other software. We have not
been faced with the need to satisfy someone else’s requirements, and for this freedom we are grateful.

Three considerations that influenced the design of UNIX are visible in retrospect.

First: because we are programmers, we naturally designed the system to make it easy to write,
test, and run programs. The most important expression of our desire for programming convenience was
that the system was arranged for interactive use, even though the original version only supported one
user. We believe that a properly designed interactive system is much more productive and satisfying to
use than a ‘‘batch’’ system. Moreover, such a system is rather easily adaptable to noninteractive use,
while the converse is not true.

Second: there have always been fairly severe size constraints on the system and its software.
Given the partially antagonistic desires for reasonable efficiency and expressive power, the size con-
straint has encouraged not only economy, but also a certain elegance of design. This may be a thinly
disguised version of the ‘‘salvation through suffering’’ philosophy, but in our case it worked.

Third: nearly from the start, the system was able to, and did, maintain itself. This fact is more
important than it might seem. If designers of a system are forced to use that system, they quickly
become aware of its functional and superficial deficiencies and are strongly motivated to correct them
before it is too late. Because all source programs were always available and easily modified on-line, we
were willing to revise and rewrite the system and its software when new ideas were invented,
discovered, or suggested by others.

The aspects of UNIX discussed in this paper exhibit clearly at least the first two of these design
considerations. The interface to the file system, for example, is extremely convenient from a program-
ming standpoint. The lowest possible interface level is designed to eliminate distinctions between the
various devices and files and between direct and sequential access. No large ‘‘access method’’ routines
are required to insulate the programmer from the system calls; in fact, all user programs either call the
system directly or use a small library program, less than a page long, that buffers a number of characters
and reads or writes them all at once.

Another important aspect of programming convenience is that there are no ‘‘control blocks’’ with
a complicated structure partially maintained by and depended on by the file system or other system calls.
Generally speaking, the contents of a program’s address space are the property of the program, and we
have tried to avoid placing restrictions on the data structures within that address space.

Given the requirement that all programs should be usable with any file or device as input or out-
put, it is also desirable to push device-dependent considerations into the operating system itself. The
only alternatives seem to be to load, with all programs, routines for dealing with each device, which is
expensive in space, or to depend on some means of dynamically linking to the routine appropriate to
each device when it is actually needed, which is expensive either in overhead or in hardware.

Likewise, the process-control scheme and the command interface have proved both convenient and
efficient. Because the shell operates as an ordinary, swappable user program, it consumes no ‘‘wired-
down’’ space in the system proper, and it may be made as powerful as desired at little cost. In particu-
lar, given the framework in which the shell executes as a process that spawns other processes to perform
commands, the notions of I/O redirection, background processes, command files, and user-selectable sys-
tem interfaces all become essentially trivial to implement.

- 14 -

Influences

The success of UNIX lies not so much in new inventions but rather in the full exploitation of a
carefully selected set of fertile ideas, and especially in showing that they can be keys to the implementa-
tion of a small yet powerful operating system.

The fork operation, essentially as we implemented it, was present in the GENIE time-sharing sys-
tem.10 On a number of points we were influenced by Multics, which suggested the particular form of the
I/O system calls11 and both the name of the shell and its general functions. The notion that the shell
should create a process for each command was also suggested to us by the early design of Multics,
although in that system it was later dropped for efficiency reasons. A similar scheme is used by
TENEX.12

IX. STATISTICS

The following numbers are presented to suggest the scale of the Research UNIX operation. Those
of our users not involved in document preparation tend to use the system for program development,
especially language work. There are few important ‘‘applications’’ programs.

Overall, we have today:

125 user population
33 maximum simultaneous users

1,630 directories
28,300 files

301,700 512-byte secondary storage blocks used

There is a ‘‘background’’ process that runs at the lowest possible priority; it is used to soak up any idle
CPU time. It has been used to produce a million-digit approximation to the constant e, and other semi-
infinite problems. Not counting this background work, we average daily:

13,500 commands
9.6 CPU hours
230 connect hours
62 different users

240 log-ins

X. ACKNOWLEDGMENTS

The contributors to UNIX are, in the traditional but here especially apposite phrase, too numerous
to mention. Certainly, collective salutes are due to our colleagues in the Computing Science Research
Center. R. H. Canaday contributed much to the basic design of the file system. We are particularly
appreciative of the inventiveness, thoughtful criticism, and constant support of R. Morris, M. D. McIl-
roy, and J. F. Ossanna.

References

1. L. P. Deutsch and B. W. Lampson, ‘‘An online editor,’’ Comm. Assoc. Comp. Mach. 10(12),
pp.793-799, 803 (December 1967).

2. B. W. Kernighan and L. L. Cherry, ‘‘A System for Typesetting Mathematics,’’ Comm. Assoc.
Comp. Mach. 18, pp.151-157 (March 1975).

3. B. W. Kernighan, M. E. Lesk, and J. F. Ossanna, ‘‘UNIX Time-Sharing System: Document
Preparation,’’ Bell Sys. Tech. J. 57(6), pp.2115-2135 (1978).

- 15 -

4. T. A. Dolotta and J. R. Mashey, ‘‘An Introduction to the Programmer’s Workbench,’’ Proc. 2nd
Int. Conf. on Software Engineering, pp.164-168 (October 13-15, 1976).

5. T. A. Dolotta, R. C. Haight, and J. R. Mashey, ‘‘UNIX Time-Sharing System: The Programmer’s
Workbench,’’ Bell Sys. Tech. J. 57(6), pp.2177-2200 (1978).

6. H. Lycklama, ‘‘UNIX Time-Sharing System: UNIX on a Microprocessor,’’ Bell Sys. Tech. J. 57(6),
pp.2087-2101 (1978).

7. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Englewood
Cliffs, New Jersey (1978).

8. Aleph-null, ‘‘Computer Recreations,’’ Software Practice and Experience 1(2), pp.201-204 (April-
June 1971).

9. S. R. Bourne, ‘‘UNIX Time-Sharing System: The UNIX Shell,’’ Bell Sys. Tech. J. 57(6), pp.1971-
1990 (1978).

10. L. P. Deutsch and B. W. Lampson, ‘‘SDS 930 time-sharing system preliminary reference manual,’’
Doc. 30.10.10, Project GENIE, Univ. Cal. at Berkeley (April 1965).

11. R. J. Feiertag and E. I. Organick, ‘‘The Multics input-output system,’’ Proc. Third Symposium on
Operating Systems Principles, pp.35-41 (October 18-20, 1971).

12. D. G. Bobrow, J. D. Burchfiel, D. L. Murphy, and R. S. Tomlinson, ‘‘TENEX, a Paged Time Shar-
ing System for the PDP-10,’’ Comm. Assoc. Comp. Mach. 15(3), pp.135-143 (March 1972).

UNIX For Beginners — Second Edition

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help new users get started on the UNIX† operating system. It
includes:

• basics needed for day-to-day use of the system — typing commands, correcting
typing mistakes, logging in and out, mail, inter-terminal communication, the file
system, printing files, redirecting I/O, pipes, and the shell.

• document preparation — a brief discussion of the major formatting programs and
macro packages, hints on preparing documents, and capsule descriptions of some
supporting software.

• UNIX programming — using the editor, programming the shell, programming in C,
other languages and tools.

• An annotated UNIX bibliography.

October 2, 1978

_ ______________
†UNIX is a Trademark of Bell Laboratories.

UNIX For Beginners — Second Edition

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

INTRODUCTION

From the user’s point of view, the UNIX operat-
ing system is easy to learn and use, and presents few
of the usual impediments to getting the job done. It
is hard, however, for the beginner to know where to
start, and how to make the best use of the facilities
available. The purpose of this introduction is to help
new users get used to the main ideas of the UNIX sys-
tem and start making effective use of it quickly.

You should have a couple of other documents
with you for easy reference as you read this one. The
most important is The UNIX Programmer’s Manual ;
it’s often easier to tell you to read about something in
the manual than to repeat its contents here. The other
useful document is A Tutorial Introduction to the
UNIX Text Editor, which will tell you how to use the
editor to get text — programs, data, documents —
into the computer.

A word of warning: the UNIX system has
become quite popular, and there are several major
variants in widespread use. Of course details also
change with time. So although the basic structure of
UNIX and how to use it is common to all versions,
there will certainly be a few things which are dif-
ferent on your system from what is described here.
We have tried to minimize the problem, but be aware
of it. In cases of doubt, this paper describes Version
7 UNIX.

This paper has five sections:

1. Getting Started: How to log in, how to type,
what to do about mistakes in typing, how to log
out. Some of this is dependent on which system
you log into (phone numbers, for example) and
what terminal you use, so this section must
necessarily be supplemented by local informa-
tion.

2. Day-to-day Use: Things you need every day to
use the system effectively: generally useful
commands; the file system.

3. Document Preparation: Preparing manuscripts is
one of the most common uses for UNIX systems.
This section contains advice, but not extensive
instructions on any of the formatting tools.

4. Writing Programs: UNIX is an excellent system
for developing programs. This section talks
about some of the tools, but again is not a
tutorial in any of the programming languages
provided by the system.

5. A UNIX Reading List. An annotated bibliogra-
phy of documents that new users should be
aware of.

I. GETTING STARTED

Logging In

You must have a UNIX login name, which you
can get from whoever administers your system. You
also need to know the phone number, unless your
system uses permanently connected terminals. The
UNIX system is capable of dealing with a wide
variety of terminals: Terminet 300’s; Execuport, TI
and similar portables; video (CRT) terminals like the
HP2640, etc.; high-priced graphics terminals like the
Tektronix 4014; plotting terminals like those from
GSI and DASI; and even the venerable Teletype in its
various forms. But note: UNIX is strongly oriented
towards devices with lower case. If your terminal
produces only upper case (e.g., model 33 Teletype,
some video and portable terminals), life will be so
difficult that you should look for another terminal.

Be sure to set the switches appropriately on your
device. Switches that might need to be adjusted
include the speed, upper/lower case mode, full
duplex, even parity, and any others that local wisdom
advises. Establish a connection using whatever magic
is needed for your terminal; this may involve dialing
a telephone call or merely flipping a switch. In either
case, UNIX should type ‘‘login:’’ at you. If it types
garbage, you may be at the wrong speed; check the
switches. If that fails, push the ‘‘break’’ or ‘‘inter-
rupt’’ key a few times, slowly. If that fails to pro-
duce a login message, consult a guru.

When you get a login: message, type your login
name in lower case. Follow it by a RETURN; the sys-
tem will not do anything until you type a RETURN.
If a password is required, you will be asked for it,
and (if possible) printing will be turned off while you
type it. Don’t forget RETURN.

- 2 -

The culmination of your login efforts is a
‘‘prompt character,’’ a single character that indicates
that the system is ready to accept commands from
you. The prompt character is usually a dollar sign $
or a percent sign %. (You may also get a message
of the day just before the prompt character, or a
notification that you have mail.)

Typing Commands

Once you’ve seen the prompt character, you can
type commands, which are requests that the system
do something. Try typing

date

followed by RETURN. You should get back some-
thing like

Mon Jan 16 14:17:10 EST 1978

Don’t forget the RETURN after the command, or noth-
ing will happen. If you think you’re being ignored,
type a RETURN; something should happen. RETURN
won’t be mentioned again, but don’t forget it — it
has to be there at the end of each line.

Another command you might try is who, which
tells you everyone who is currently logged in:

who

gives something like

mb tty01 Jan 16 09:11
ski tty05 Jan 16 09:33
gam tty11 Jan 16 13:07

The time is when the user logged in; ‘‘ttyxx’’ is the
system’s idea of what terminal the user is on.

If you make a mistake typing the command
name, and refer to a non-existent command, you will
be told. For example, if you type

whom

you will be told

whom: not found

Of course, if you inadvertently type the name of some
other command, it will run, with more or less mys-
terious results.

Strange Terminal Behavior

Sometimes you can get into a state where your
terminal acts strangely. For example, each letter may
be typed twice, or the RETURN may not cause a line
feed or a return to the left margin. You can often fix
this by logging out and logging back in. Or you can
read the description of the command stty in section I
of the manual. To get intelligent treatment of tab
characters (which are much used in UNIX) if your ter-
minal doesn’t have tabs, type the command

stty – tabs

and the system will convert each tab into the right
number of blanks for you. If your terminal does have
computer-settable tabs, the command tabs will set the
stops correctly for you.

Mistakes in Typing

If you make a typing mistake, and see it before
RETURN has been typed, there are two ways to
recover. The sharp-character # erases the last charac-
ter typed; in fact successive uses of # erase characters
back to the beginning of the line (but not beyond).
So if you type badly, you can correct as you go:

dd#atte##e

is the same as date.

The at-sign @ erases all of the characters typed
so far on the current input line, so if the line is irre-
trievably fouled up, type an @ and start the line over.

What if you must enter a sharp or at-sign as part
of the text? If you precede either # or @ by a
backslash \, it loses its erase meaning. So to enter a
sharp or at-sign in something, type \# or \@. The
system will always echo a newline at you after your
at-sign, even if preceded by a backslash. Don’t worry
— the at-sign has been recorded.

To erase a backslash, you have to type two
sharps or two at-signs, as in \##. The backslash is
used extensively in UNIX to indicate that the follow-
ing character is in some way special.

Read-ahead

UNIX has full read-ahead, which means that you
can type as fast as you want, whenever you want,
even when some command is typing at you. If you
type during output, your input characters will appear
intermixed with the output characters, but they will be
stored away and interpreted in the correct order. So
you can type several commands one after another
without waiting for the first to finish or even begin.

Stopping a Program

You can stop most programs by typing the char-
acter ‘‘DEL’’ (perhaps called ‘‘delete’’ or ‘‘rubout’’
on your terminal). The ‘‘interrupt’’ or ‘‘break’’ key
found on most terminals can also be used. In a few
programs, like the text editor, DEL stops whatever the
program is doing but leaves you in that program.
Hanging up the phone will stop most programs.

Logging Out

The easiest way to log out is to hang up the
phone. You can also type

login

and let someone else use the terminal you were on.
It is usually not sufficient just to turn off the terminal.
Most UNIX systems do not use a time-out mechanism,

- 3 -

so you’ll be there forever unless you hang up.

Mail

When you log in, you may sometimes get the
message

You have mail.

UNIX provides a postal system so you can communi-
cate with other users of the system. To read your
mail, type the command

mail

Your mail will be printed, one message at a time,
most recent message first. After each message, mail
waits for you to say what to do with it. The two
basic responses are d, which deletes the message, and
RETURN, which does not (so it will still be there the
next time you read your mailbox). Other responses
are described in the manual. (Earlier versions of mail
do not process one message at a time, but are other-
wise similar.)

How do you send mail to someone else? Sup-
pose it is to go to ‘‘joe’’ (assuming ‘‘joe’’ is
someone’s login name). The easiest way is this:

mail joe
now type in the text of the letter
on as many lines as you like ...
After the last line of the letter
type the character ‘‘control– d’’,
that is, hold down ‘‘control’’ and type
a letter ‘‘d’’.

And that’s it. The ‘‘control-d’’ sequence, often called
‘‘EOF’’ for end-of-file, is used throughout the system
to mark the end of input from a terminal, so you
might as well get used to it.

For practice, send mail to yourself. (This isn’t
as strange as it might sound — mail to oneself is a
handy reminder mechanism.)

There are other ways to send mail — you can
send a previously prepared letter, and you can mail to
a number of people all at once. For more details see
mail(1). (The notation mail(1) means the command
mail in section 1 of the UNIX Programmer’s Manual.)

Writing to other users

At some point, out of the blue will come a mes-
sage like

Message from joe tty07...

accompanied by a startling beep. It means that Joe
wants to talk to you, but unless you take explicit
action you won’t be able to talk back. To respond,
type the command

write joe

This establishes a two-way communication path.
Now whatever Joe types on his terminal will appear

on yours and vice versa. The path is slow, rather like
talking to the moon. (If you are in the middle of
something, you have to get to a state where you can
type a command. Normally, whatever program you
are running has to terminate or be terminated. If
you’re editing, you can escape temporarily from the
editor — read the editor tutorial.)

A protocol is needed to keep what you type from
getting garbled up with what Joe types. Typically it’s
like this:

Joe types write smith and waits.
Smith types write joe and waits.
Joe now types his message (as many lines as
he likes). When he’s ready for a reply, he
signals it by typing (o), which stands for
‘‘over’’.
Now Smith types a reply, also terminated by
(o).
This cycle repeats until someone gets tired; he
then signals his intent to quit with (oo), for
‘‘over and out’’.
To terminate the conversation, each side must
type a ‘‘control-d’’ character alone on a line.
(‘‘Delete’’ also works.) When the other
person types his ‘‘control-d’’, you will get the
message EOF on your terminal.

If you write to someone who isn’t logged in, or
who doesn’t want to be disturbed, you’ll be told. If
the target is logged in but doesn’t answer after a
decent interval, simply type ‘‘control-d’’.

On-line Manual

The UNIX Programmer’s Manual is typically
kept on-line. If you get stuck on something, and
can’t find an expert to assist you, you can print on
your terminal some manual section that might help.
This is also useful for getting the most up-to-date
information on a command. To print a manual sec-
tion, type ‘‘man command-name’’. Thus to read up
on the who command, type

man who

and, of course,

man man

tells all about the man command.

Computer Aided Instruction

Your UNIX system may have available a program
called learn, which provides computer aided instruc-
tion on the file system and basic commands, the edi-
tor, document preparation, and even C programming.
Try typing the command

learn

If learn exists on your system, it will tell you what to
do from there.

- 4 -

II. DAY-TO-DAY USE

Creating Files — The Editor

If you have to type a paper or a letter or a pro-
gram, how do you get the information stored in the
machine? Most of these tasks are done with the
UNIX ‘‘text editor’’ ed. Since ed is thoroughly docu-
mented in ed(1) and explained in A Tutorial Introduc-
tion to the UNIX Text Editor, we won’t spend any
time here describing how to use it. All we want it
for right now is to make some files. (A file is just a
collection of information stored in the machine, a
simplistic but adequate definition.)

To create a file called junk with some text in it,
do the following:

ed junk (invokes the text editor)
a (command to ‘‘ed’’, to add text)
now type in
whatever text you want ...
. (signals the end of adding text)

The ‘‘.’’ that signals the end of adding text must be
at the beginning of a line by itself. Don’t forget it,
for until it is typed, no other ed commands will be
recognized — everything you type will be treated as
text to be added.

At this point you can do various editing opera-
tions on the text you typed in, such as correcting
spelling mistakes, rearranging paragraphs and the like.
Finally, you must write the information you have
typed into a file with the editor command w:

w

ed will respond with the number of characters it
wrote into the file junk.

Until the w command, nothing is stored per-
manently, so if you hang up and go home the infor-
mation is lost.† But after w the information is there
permanently; you can re-access it any time by typing

ed junk

Type a q command to quit the editor. (If you try to
quit without writing, ed will print a ? to remind you.
A second q gets you out regardless.)

Now create a second file called temp in the
same manner. You should now have two files, junk
and temp.

What files are out there?

The ls (for ‘‘list’’) command lists the names (not
contents) of any of the files that UNIX knows about.
If you type

_ ____________________
† This is not strictly true — if you hang up while editing, the
data you were working on is saved in a file called ed.hup,
which you can continue with at your next session.

ls

the response will be

junk
temp

which are indeed the two files just created. The
names are sorted into alphabetical order automati-
cally, but other variations are possible. For example,
the command

ls – t

causes the files to be listed in the order in which they
were last changed, most recent first. The – l option
gives a ‘‘long’’ listing:

ls – l

will produce something like

– rw– rw– rw– 1 bwk 41 Jul 22 2:56 junk
– rw– rw– rw– 1 bwk 78 Jul 22 2:57 temp

The date and time are of the last change to the file.
The 41 and 78 are the number of characters (which
should agree with the numbers you got from ed).
bwk is the owner of the file, that is, the person who
created it. The – rw– rw– rw– tells who has permis-
sion to read and write the file, in this case everyone.

Options can be combined: ls – lt gives the same
thing as ls – l, but sorted into time order. You can
also name the files you’re interested in, and ls will
list the information about them only. More details
can be found in ls(1).

The use of optional arguments that begin with a
minus sign, like – t and – lt, is a common convention
for UNIX programs. In general, if a program accepts
such optional arguments, they precede any filename
arguments. It is also vital that you separate the vari-
ous arguments with spaces: ls– l is not the same as
ls – l.

Printing Files

Now that you’ve got a file of text, how do you
print it so people can look at it? There are a host of
programs that do that, probably more than are needed.

One simple thing is to use the editor, since print-
ing is often done just before making changes anyway.
You can say

ed junk
1,$p

ed will reply with the count of the characters in junk
and then print all the lines in the file. After you learn
how to use the editor, you can be selective about the
parts you print.

There are times when it’s not feasible to use the
editor for printing. For example, there is a limit on
how big a file ed can handle (several thousand lines).
Secondly, it will only print one file at a time, and

- 5 -

sometimes you want to print several, one after
another. So here are a couple of alternatives.

First is cat, the simplest of all the printing pro-
grams. cat simply prints on the terminal the contents
of all the files named in a list. Thus

cat junk

prints one file, and

cat junk temp

prints two. The files are simply concatenated (hence
the name ‘‘cat’’) onto the terminal.

pr produces formatted printouts of files. As with
cat, pr prints all the files named in a list. The differ-
ence is that it produces headings with date, time, page
number and file name at the top of each page, and
extra lines to skip over the fold in the paper. Thus,

pr junk temp

will print junk neatly, then skip to the top of a new
page and print temp neatly.

pr can also produce multi-column output:

pr – 3 junk

prints junk in 3-column format. You can use any
reasonable number in place of ‘‘3’’ and pr will do its
best. pr has other capabilities as well; see pr(1).

It should be noted that pr is not a formatting
program in the sense of shuffling lines around and
justifying margins. The true formatters are nroff and
troff, which we will get to in the section on docu-
ment preparation.

There are also programs that print files on a
high-speed printer. Look in your manual under opr
and lpr. Which to use depends on what equipment is
attached to your machine.

Shuffling Files About

Now that you have some files in the file system
and some experience in printing them, you can try
bigger things. For example, you can move a file from
one place to another (which amounts to giving it a
new name), like this:

mv junk precious

This means that what used to be ‘‘junk’’ is now
‘‘precious’’. If you do an ls command now, you will
get

precious
temp

Beware that if you move a file to another one that
already exists, the already existing contents are lost
forever.

If you want to make a copy of a file (that is, to
have two versions of something), you can use the cp
command:

cp precious temp1

makes a duplicate copy of precious in temp1.

Finally, when you get tired of creating and mov-
ing files, there is a command to remove files from the
file system, called rm.

rm temp temp1

will remove both of the files named.

You will get a warning message if one of the
named files wasn’t there, but otherwise rm, like most
UNIX commands, does its work silently. There is no
prompting or chatter, and error messages are occa-
sionally curt. This terseness is sometimes disconcert-
ing to newcomers, but experienced users find it desir-
able.

What’s in a Filename

So far we have used filenames without ever say-
ing what’s a legal name, so it’s time for a couple of
rules. First, filenames are limited to 14 characters,
which is enough to be descriptive. Second, although
you can use almost any character in a filename, com-
mon sense says you should stick to ones that are visi-
ble, and that you should probably avoid characters
that might be used with other meanings. We have
already seen, for example, that in the ls command,
ls – t means to list in time order. So if you had a file
whose name was – t, you would have a tough time
listing it by name. Besides the minus sign, there are
other characters which have special meaning. To
avoid pitfalls, you would do well to use only letters,
numbers and the period until you’re familiar with the
situation.

On to some more positive suggestions. Suppose
you’re typing a large document like a book. Logi-
cally this divides into many small pieces, like
chapters and perhaps sections. Physically it must be
divided too, for ed will not handle really big files.
Thus you should type the document as a number of
files. You might have a separate file for each chapter,
called

chap1
chap2
etc...

Or, if each chapter were broken into several files, you
might have

chap1.1
chap1.2
chap1.3
...
chap2.1
chap2.2
...

You can now tell at a glance where a particular file
fits into the whole.

- 6 -

There are advantages to a systematic naming
convention which are not obvious to the novice UNIX
user. What if you wanted to print the whole book?
You could say

pr chap1.1 chap1.2 chap1.3

but you would get tired pretty fast, and would prob-
ably even make mistakes. Fortunately, there is a
shortcut. You can say

pr chap*

The * means ‘‘anything at all,’’ so this translates into
‘‘print all files whose names begin with chap’’, listed
in alphabetical order.

This shorthand notation is not a property of the
pr command, by the way. It is system-wide, a ser-
vice of the program that interprets commands (the
‘‘shell,’’ sh(1)). Using that fact, you can see how to
list the names of the files in the book:

ls chap*

produces

chap1.1
chap1.2
chap1.3
...

The * is not limited to the last position in a filename
— it can be anywhere and can occur several times.
Thus

rm *junk* *temp*

removes all files that contain junk or temp as any
part of their name. As a special case, * by itself
matches every filename, so

pr *

prints all your files (alphabetical order), and

rm *

removes all files. (You had better be very sure that’s
what you wanted to say!)

The * is not the only pattern-matching feature
available. Suppose you want to print only chapters 1
through 4 and 9. Then you can say

pr chap[12349]*

The [...] means to match any of the characters inside
the brackets. A range of consecutive letters or digits
can be abbreviated, so you can also do this with

pr chap[1– 49]*

Letters can also be used within brackets: [a– z]
matches any character in the range a through z.

The ? pattern matches any single character, so

ls ?

lists all files which have single-character names, and

ls – l chap?.1

lists information about the first file of each chapter
(chap1.1, chap2.1, etc.).

Of these niceties, * is certainly the most useful,
and you should get used to it. The others are frills,
but worth knowing.

If you should ever have to turn off the special
meaning of *, ?, etc., enclose the entire argument in
single quotes, as in

ls ′?′

We’ll see some more examples of this shortly.

What’s in a Filename, Continued

When you first made that file called junk, how
did the system know that there wasn’t another junk
somewhere else, especially since the person in the
next office is also reading this tutorial? The answer
is that generally each user has a private directory,
which contains only the files that belong to him.
When you log in, you are ‘‘in’’ your directory.
Unless you take special action, when you create a
new file, it is made in the directory that you are
currently in; this is most often your own directory,
and thus the file is unrelated to any other file of the
same name that might exist in someone else’s direc-
tory.

The set of all files is organized into a (usually
big) tree, with your files located several branches into
the tree. It is possible for you to ‘‘walk’’ around this
tree, and to find any file in the system, by starting at
the root of the tree and walking along the proper set
of branches. Conversely, you can start where you are
and walk toward the root.

Let’s try the latter first. The basic tools is the
command pwd (‘‘print working directory’’), which
prints the name of the directory you are currently in.

Although the details will vary according to the
system you are on, if you give the command pwd, it
will print something like

/usr/your-name

This says that you are currently in the directory
your-name, which is in turn in the directory /usr,
which is in turn in the root directory called by con-
vention just /. (Even if it’s not called /usr on your
system, you will get something analogous. Make the
corresponding changes and read on.)

If you now type

ls /usr/your-name

you should get exactly the same list of file names as
you get from a plain ls: with no arguments, ls lists
the contents of the current directory; given the name
of a directory, it lists the contents of that directory.

- 7 -

Next, try

ls /usr

This should print a long series of names, among
which is your own login name your-name. On many
systems, usr is a directory that contains the direc-
tories of all the normal users of the system, like you.

The next step is to try

ls /

You should get a response something like this
(although again the details may be different):

bin
dev
etc
lib
tmp
usr

This is a collection of the basic directories of files
that the system knows about; we are at the root of the
tree.

Now try

cat /usr/your-name/junk

(if junk is still around in your directory). The name

/usr/your-name/junk

is called the pathname of the file that you normally
think of as ‘‘junk’’. ‘‘Pathname’’ has an obvious
meaning: it represents the full name of the path you
have to follow from the root through the tree of direc-
tories to get to a particular file. It is a universal rule
in the UNIX system that anywhere you can use an
ordinary filename, you can use a pathname.

Here is a picture which may make this clearer:

(root)
⁄  \

⁄  \
⁄  \

bin etc usr dev tmp
⁄  \ ⁄  \ ⁄  \ ⁄  \ ⁄  \

⁄  \
⁄  \

adam eve mary
⁄ ⁄ \ \

⁄ \ junk
junk temp

Notice that Mary’s junk is unrelated to Eve’s.

This isn’t too exciting if all the files of interest
are in your own directory, but if you work with
someone else or on several projects concurrently, it
becomes handy indeed. For example, your friends
can print your book by saying

pr /usr/your-name/chap*

Similarly, you can find out what files your neighbor
has by saying

ls /usr/neighbor-name

or make your own copy of one of his files by

cp /usr/your-neighbor/his-file yourfile

If your neighbor doesn’t want you poking around
in his files, or vice versa, privacy can be arranged.
Each file and directory has read-write-execute permis-
sions for the owner, a group, and everyone else,
which can be set to control access. See ls(1) and
chmod(1) for details. As a matter of observed fact,
most users most of the time find openness of more
benefit than privacy.

As a final experiment with pathnames, try

ls /bin /usr/bin

Do some of the names look familiar? When you run
a program, by typing its name after the prompt char-
acter, the system simply looks for a file of that name.
It normally looks first in your directory (where it typi-
cally doesn’t find it), then in /bin and finally in
/usr/bin. There is nothing magic about commands
like cat or ls, except that they have been collected
into a couple of places to be easy to find and admin-
ister.

What if you work regularly with someone else
on common information in his directory? You could
just log in as your friend each time you want to, but
you can also say ‘‘I want to work on his files instead
of my own’’. This is done by changing the directory
that you are currently in:

cd /usr/your-friend

(On some systems, cd is spelled chdir.) Now when
you use a filename in something like cat or pr, it
refers to the file in your friend’s directory. Changing
directories doesn’t affect any permissions associated
with a file — if you couldn’t access a file from your
own directory, changing to another directory won’t
alter that fact. Of course, if you forget what directory
you’re in, type

pwd

to find out.

It is usually convenient to arrange your own files
so that all the files related to one thing are in a direc-
tory separate from other projects. For example, when
you write your book, you might want to keep all the
text in a directory called book. So make one with

mkdir book

then go to it with

cd book

then start typing chapters. The book is now found in
(presumably)

/usr/your-name/book

- 8 -

To remove the directory book, type

rm book/*
rmdir book

The first command removes all files from the direc-
tory; the second removes the empty directory.

You can go up one level in the tree of files by
saying

cd ..

‘‘..’’ is the name of the parent of whatever directory
you are currently in. For completeness, ‘‘.’’ is an
alternate name for the directory you are in.

Using Files instead of the Terminal

Most of the commands we have seen so far pro-
duce output on the terminal; some, like the editor,
also take their input from the terminal. It is universal
in UNIX systems that the terminal can be replaced by
a file for either or both of input and output. As one
example,

ls

makes a list of files on your terminal. But if you say

ls >filelist

a list of your files will be placed in the file filelist
(which will be created if it doesn’t already exist, or
overwritten if it does). The symbol > means ‘‘put the
output on the following file, rather than on the termi-
nal.’’ Nothing is produced on the terminal. As
another example, you could combine several files into
one by capturing the output of cat in a file:

cat f1 f2 f3 >temp

The symbol >> operates very much like > does,
except that it means ‘‘add to the end of.’’ That is,

cat f1 f2 f3 >>temp

means to concatenate f1, f2 and f3 to the end of
whatever is already in temp, instead of overwriting
the existing contents. As with >, if temp doesn’t
exist, it will be created for you.

In a similar way, the symbol < means to take the
input for a program from the following file, instead of
from the terminal. Thus, you could make up a script
of commonly used editing commands and put them
into a file called script. Then you can run the script
on a file by saying

ed file <script

As another example, you can use ed to prepare a
letter in file let, then send it to several people with

mail adam eve mary joe <let

Pipes

One of the novel contributions of the UNIX sys-
tem is the idea of a pipe. A pipe is simply a way to
connect the output of one program to the input of
another program, so the two run as a sequence of
processes — a pipeline.

For example,

pr f g h

will print the files f, g, and h, beginning each on a
new page. Suppose you want them run together
instead. You could say

cat f g h >temp
pr <temp
rm temp

but this is more work than necessary. Clearly what
we want is to take the output of cat and connect it to
the input of pr. So let us use a pipe:

cat f g h  pr

The vertical bar  means to take the output from cat,
which would normally have gone to the terminal, and
put it into pr to be neatly formatted.

There are many other examples of pipes. For
example,

ls  pr – 3

prints a list of your files in three columns. The pro-
gram wc counts the number of lines, words and char-
acters in its input, and as we saw earlier, who prints a
list of currently-logged on people, one per line. Thus

who  wc

tells how many people are logged on. And of course

ls  wc

counts your files.

Any program that reads from the terminal can
read from a pipe instead; any program that writes on
the terminal can drive a pipe. You can have as many
elements in a pipeline as you wish.

Many UNIX programs are written so that they
will take their input from one or more files if file
arguments are given; if no arguments are given they
will read from the terminal, and thus can be used in
pipelines. pr is one example:

pr – 3 a b c

prints files a, b and c in order in three columns. But
in

cat a b c  pr – 3

pr prints the information coming down the pipeline,
still in three columns.

- 9 -

The Shell

We have already mentioned once or twice the
mysterious ‘‘shell,’’ which is in fact sh(1). The shell
is the program that interprets what you type as com-
mands and arguments. It also looks after translating
*, etc., into lists of filenames, and <, >, and  into
changes of input and output streams.

The shell has other capabilities too. For exam-
ple, you can run two programs with one command
line by separating the commands with a semicolon;
the shell recognizes the semicolon and breaks the line
into two commands. Thus

date; who

does both commands before returning with a prompt
character.

You can also have more than one program run-
ning simultaneously if you wish. For example, if you
are doing something time-consuming, like the editor
script of an earlier section, and you don’t want to
wait around for the results before starting something
else, you can say

ed file <script &

The ampersand at the end of a command line says
‘‘start this command running, then take further com-
mands from the terminal immediately,’’ that is, don’t
wait for it to complete. Thus the script will begin,
but you can do something else at the same time. Of
course, to keep the output from interfering with what
you’re doing on the terminal, it would be better to
say

ed file <script >script.out &

which saves the output lines in a file called
script.out.

When you initiate a command with &, the sys-
tem replies with a number called the process number,
which identifies the command in case you later want
to stop it. If you do, you can say

kill process-number

If you forget the process number, the command ps
will tell you about everything you have running. (If
you are desperate, kill 0 will kill all your processes.)
And if you’re curious about other people, ps a will
tell you about all programs that are currently running.

You can say

(command-1; command-2; command-3) &

to start three commands in the background, or you
can start a background pipeline with

command-1  command-2 &

Just as you can tell the editor or some similar
program to take its input from a file instead of from
the terminal, you can tell the shell to read a file to get

commands. (Why not? The shell, after all, is just a
program, albeit a clever one.) For instance, suppose
you want to set tabs on your terminal, and find out
the date and who’s on the system every time you log
in. Then you can put the three necessary commands
(tabs, date, who) into a file, let’s call it startup, and
then run it with

sh startup

This says to run the shell with the file startup as
input. The effect is as if you had typed the contents
of startup on the terminal.

If this is to be a regular thing, you can eliminate
the need to type sh: simply type, once only, the com-
mand

chmod +x startup

and thereafter you need only say

startup

to run the sequence of commands. The chmod(1)
command marks the file executable; the shell recog-
nizes this and runs it as a sequence of commands.

If you want startup to run automatically every
time you log in, create a file in your login directory
called .profile, and place in it the line startup.
When the shell first gains control when you log in, it
looks for the .profile file and does whatever com-
mands it finds in it. We’ll get back to the shell in the
section on programming.

III. DOCUMENT PREPARATION

UNIX systems are used extensively for document
preparation. There are two major formatting pro-
grams, that is, programs that produce a text with
justified right margins, automatic page numbering and
titling, automatic hyphenation, and the like. nroff is
designed to produce output on terminals and line-
printers. troff (pronounced ‘‘tee-roff’’) instead drives
a phototypesetter, which produces very high quality
output on photographic paper. This paper was for-
matted with troff.

Formatting Packages

The basic idea of nroff and troff is that the text
to be formatted contains within it ‘‘formatting com-
mands’’ that indicate in detail how the formatted text
is to look. For example, there might be commands
that specify how long lines are, whether to use single
or double spacing, and what running titles to use on
each page.

Because nroff and troff are relatively hard to
learn to use effectively, several ‘‘packages’’ of
canned formatting requests are available to let you
specify paragraphs, running titles, footnotes, multi-
column output, and so on, with little effort and
without having to learn nroff and troff. These pack-

- 10 -

ages take a modest effort to learn, but the rewards for
using them are so great that it is time well spent.

In this section, we will provide a hasty look at
the ‘‘manuscript’’ package known as – ms. Format-
ting requests typically consist of a period and two
upper-case letters, such as .TL, which is used to
introduce a title, or .PP to begin a new paragraph.

A document is typed so it looks something like
this:

.TL
title of document
.AU
author name
.SH
section heading
.PP
paragraph ...
.PP
another paragraph ...
.SH
another section heading
.PP
etc.

The lines that begin with a period are the formatting
requests. For example, .PP calls for starting a new
paragraph. The precise meaning of .PP depends on
what output device is being used (typesetter or termi-
nal, for instance), and on what publication the docu-
ment will appear in. For example, – ms normally
assumes that a paragraph is preceded by a space (one
line in nroff, 1⁄2 line in troff), and the first word is
indented. These rules can be changed if you like, but
they are changed by changing the interpretation of
.PP, not by re-typing the document.

To actually produce a document in standard for-
mat using – ms, use the command

troff – ms files ...

for the typesetter, and

nroff – ms files ...

for a terminal. The – ms argument tells troff and
nroff to use the manuscript package of formatting
requests.

There are several similar packages; check with a
local expert to determine which ones are in common
use on your machine.

Supporting Tools

In addition to the basic formatters, there is a host
of supporting programs that help with document
preparation. The list in the next few paragraphs is far
from complete, so browse through the manual and
check with people around you for other possibilities.

eqn and neqn let you integrate mathematics into
the text of a document, in an easy-to-learn language

that closely resembles the way you would speak it
aloud. For example, the eqn input

sum from i=0 to n x sub i ˜=˜ pi over 2

produces the output

i =0
Σ
n

xi =
2
π_ _

The program tbl provides an analogous service
for preparing tabular material; it does all the computa-
tions necessary to align complicated columns with
elements of varying widths.

refer prepares bibliographic citations from a data
base, in whatever style is defined by the formatting
package. It looks after all the details of numbering
references in sequence, filling in page and volume
numbers, getting the author’s initials and the journal
name right, and so on.

spell and typo detect possible spelling mistakes
in a document. spell works by comparing the words
in your document to a dictionary, printing those that
are not in the dictionary. It knows enough about
English spelling to detect plurals and the like, so it
does a very good job. typo looks for words which
are ‘‘unusual’’, and prints those. Spelling mistakes
tend to be more unusual, and thus show up early
when the most unusual words are printed first.

grep looks through a set of files for lines that
contain a particular text pattern (rather like the
editor’s context search does, but on a bunch of files).
For example,

grep ′ing$′ chap*

will find all lines that end with the letters ing in the
files chap*. (It is almost always a good practice to
put single quotes around the pattern you’re searching
for, in case it contains characters like * or $ that have
a special meaning to the shell.) grep is often useful
for finding out in which of a set of files the
misspelled words detected by spell are actually
located.

diff prints a list of the differences between two
files, so you can compare two versions of something
automatically (which certainly beats proofreading by
hand).

wc counts the words, lines and characters in a
set of files. tr translates characters into other charac-
ters; for example it will convert upper to lower case
and vice versa. This translates upper into lower:

tr A– Z a– z <input >output

sort sorts files in a variety of ways; cref makes
cross-references; ptx makes a permuted index
(keyword-in-context listing). sed provides many of
the editing facilities of ed, but can apply them to
arbitrarily long inputs. awk provides the ability to do
both pattern matching and numeric computations, and

- 11 -

to conveniently process fields within lines. These
programs are for more advanced users, and they are
not limited to document preparation. Put them on
your list of things to learn about.

Most of these programs are either independently
documented (like eqn and tbl), or are sufficiently
simple that the description in the UNIX Programmer’s
Manual is adequate explanation.

Hints for Preparing Documents

Most documents go through several versions
(always more than you expected) before they are
finally finished. Accordingly, you should do whatever
possible to make the job of changing them easy.

First, when you do the purely mechanical opera-
tions of typing, type so that subsequent editing will
be easy. Start each sentence on a new line. Make
lines short, and break lines at natural places, such as
after commas and semicolons, rather than randomly.
Since most people change documents by rewriting
phrases and adding, deleting and rearranging sen-
tences, these precautions simplify any editing you
have to do later.

Keep the individual files of a document down to
modest size, perhaps ten to fifteen thousand charac-
ters. Larger files edit more slowly, and of course if
you make a dumb mistake it’s better to have clob-
bered a small file than a big one. Split into files at
natural boundaries in the document, for the same rea-
sons that you start each sentence on a new line.

The second aspect of making change easy is to
not commit yourself to formatting details too early.
One of the advantages of formatting packages like
– ms is that they permit you to delay decisions to the
last possible moment. Indeed, until a document is
printed, it is not even decided whether it will be
typeset or put on a line printer.

As a rule of thumb, for all but the most trivial
jobs, you should type a document in terms of a set of
requests like .PP, and then define them appropriately,
either by using one of the canned packages (the better
way) or by defining your own nroff and troff com-
mands. As long as you have entered the text in some
systematic way, it can always be cleaned up and re-
formatted by a judicious combination of editing com-
mands and request definitions.

IV. PROGRAMMING

There will be no attempt made to teach any of
the programming languages available but a few words
of advice are in order. One of the reasons why the
UNIX system is a productive programming environ-
ment is that there is already a rich set of tools avail-
able, and facilities like pipes, I/O redirection, and the
capabilities of the shell often make it possible to do a
job by pasting together programs that already exist
instead of writing from scratch.

The Shell

The pipe mechanism lets you fabricate quite
complicated operations out of spare parts that already
exist. For example, the first draft of the spell pro-
gram was (roughly)

cat ... collect the files
 tr ... put each word on a new line
 tr ... delete punctuation, etc.
 sort into dictionary order
 uniq discard duplicates
 comm print words in text

but not in dictionary

More pieces have been added subsequently, but this
goes a long way for such a small effort.

The editor can be made to do things that would
normally require special programs on other systems.
For example, to list the first and last lines of each of
a set of files, such as a book, you could laboriously
type

ed
e chap1.1
1p
$p
e chap1.2
1p
$p
etc.

But you can do the job much more easily. One way
is to type

ls chap* >temp

to get the list of filenames into a file. Then edit this
file to make the necessary series of editing commands
(using the global commands of ed), and write it into
script. Now the command

ed <script

will produce the same output as the laborious hand
typing. Alternately (and more easily), you can use
the fact that the shell will perform loops, repeating a
set of commands over and over again for a set of
arguments:

for i in chap*
do

ed $i <script
done

This sets the shell variable i to each file name in turn,
then does the command. You can type this command
at the terminal, or put it in a file for later execution.

Programming the Shell

An option often overlooked by newcomers is that
the shell is itself a programming language, with vari-
ables, control flow (if-else, while, for, case), subrou-
tines, and interrupt handling. Since there are many

- 12 -

building-block programs, you can sometimes avoid
writing a new program merely by piecing together
some of the building blocks with shell command files.

We will not go into any details here; examples
and rules can be found in An Introduction to the UNIX
Shell, by S. R. Bourne.

Programming in C

If you are undertaking anything substantial, C is
the only reasonable choice of programming language:
everything in the UNIX system is tuned to it. The
system itself is written in C, as are most of the pro-
grams that run on it. It is also a easy language to use
once you get started. C is introduced and fully
described in The C Programming Language by B. W.
Kernighan and D. M. Ritchie (Prentice-Hall, 1978).
Several sections of the manual describe the system
interfaces, that is, how you do I/O and similar func-
tions. Read UNIX Programming for more compli-
cated things.

Most input and output in C is best handled with
the standard I/O library, which provides a set of I/O
functions that exist in compatible form on most
machines that have C compilers. In general, it’s
wisest to confine the system interactions in a program
to the facilities provided by this library.

C programs that don’t depend too much on spe-
cial features of UNIX (such as pipes) can be moved to
other computers that have C compilers. The list of
such machines grows daily; in addition to the original
PDP-11, it currently includes at least Honeywell 6000,
IBM 370, Interdata 8/32, Data General Nova and
Eclipse, HP 2100, Harris /7, VAX 11/780, SEL 86,
and Zilog Z80. Calls to the standard I/O library will
work on all of these machines.

There are a number of supporting programs that
go with C. lint checks C programs for potential por-
tability problems, and detects errors such as
mismatched argument types and uninitialized vari-
ables.

For larger programs (anything whose source is
on more than one file) make allows you to specify
the dependencies among the source files and the pro-
cessing steps needed to make a new version; it then
checks the times that the pieces were last changed
and does the minimal amount of recompiling to create
a consistent updated version.

The debugger adb is useful for digging through
the dead bodies of C programs, but is rather hard to
learn to use effectively. The most effective debug-
ging tool is still careful thought, coupled with judi-
ciously placed print statements.

The C compiler provides a limited instrumenta-
tion service, so you can find out where programs
spend their time and what parts are worth optimizing.
Compile the routines with the – p option; after the test
run, use prof to print an execution profile. The com-

mand time will give you the gross run-time statistics
of a program, but they are not super accurate or
reproducible.

Other Languages

If you have to use Fortran, there are two possi-
bilities. You might consider Ratfor, which gives you
the decent control structures and free-form input that
characterize C, yet lets you write code that is still
portable to other environments. Bear in mind that
UNIX Fortran tends to produce large and relatively
slow-running programs. Furthermore, supporting
software like adb, prof, etc., are all virtually useless
with Fortran programs. There may also be a Fortran
77 compiler on your system. If so, this is a viable
alternative to Ratfor, and has the non-trivial advan-
tage that it is compatible with C and related pro-
grams. (The Ratfor processor and C tools can be
used with Fortran 77 too.)

If your application requires you to translate a
language into a set of actions or another language,
you are in effect building a compiler, though probably
a small one. In that case, you should be using the
yacc compiler-compiler, which helps you develop a
compiler quickly. The lex lexical analyzer generator
does the same job for the simpler languages that can
be expressed as regular expressions. It can be used
by itself, or as a front end to recognize inputs for a
yacc-based program. Both yacc and lex require some
sophistication to use, but the initial effort of learning
them can be repaid many times over in programs that
are easy to change later on.

Most UNIX systems also make available other
languages, such as Algol 68, APL, Basic, Lisp, Pas-
cal, and Snobol. Whether these are useful depends
largely on the local environment: if someone cares
about the language and has worked on it, it may be in
good shape. If not, the odds are strong that it will be
more trouble than it’s worth.

V. UNIX READING LIST

General:

K. L. Thompson and D. M. Ritchie, The UNIX
Programmer’s Manual, Bell Laboratories, 1978.
Lists commands, system routines and interfaces, file
formats, and some of the maintenance procedures.
You can’t live without this, although you will prob-
ably only need to read section 1.

Documents for Use with the UNIX Time-sharing Sys-
tem. Volume 2 of the Programmer’s Manual. This
contains more extensive descriptions of major com-
mands, and tutorials and reference manuals. All of
the papers listed below are in it, as are descriptions of
most of the programs mentioned above.

D. M. Ritchie and K. L. Thompson, ‘‘The UNIX
Time-sharing System,’’ CACM, July 1974. An over-

- 13 -

view of the system, for people interested in operating
systems. Worth reading by anyone who programs.
Contains a remarkable number of one-sentence obser-
vations on how to do things right.

The Bell System Technical Journal (BSTJ) Special
Issue on UNIX, July/August, 1978, contains many
papers describing recent developments, and some
retrospective material.

The 2nd International Conference on Software
Engineering (October, 1976) contains several papers
describing the use of the Programmer’s Workbench
(PWB) version of UNIX.

Document Preparation:

B. W. Kernighan, ‘‘A Tutorial Introduction to the
UNIX Text Editor’’ and ‘‘Advanced Editing on
UNIX,’’ Bell Laboratories, 1978. Beginners need the
introduction; the advanced material will help you get
the most out of the editor.

M. E. Lesk, ‘‘Typing Documents on UNIX,’’ Bell
Laboratories, 1978. Describes the – ms macro pack-
age, which isolates the novice from the vagaries of
nroff and troff, and takes care of most formatting
situations. If this specific package isn’t available on
your system, something similar probably is. The
most likely alternative is the PWB/UNIX macro pack-
age – mm; see your local guru if you use PWB/UNIX.

B. W. Kernighan and L. L. Cherry, ‘‘A System for
Typesetting Mathematics,’’ Bell Laboratories Com-
puting Science Tech. Rep. 17.

M. E. Lesk, ‘‘Tbl — A Program to Format Tables,’’
Bell Laboratories CSTR 49, 1976.

J. F. Ossanna, Jr., ‘‘NROFF/TROFF User’s Manual,’’
Bell Laboratories CSTR 54, 1976. troff is the basic
formatter used by – ms, eqn and tbl. The reference
manual is indispensable if you are going to write or
maintain these or similar programs. But start with:

B. W. Kernighan, ‘‘A TROFF Tutorial,’’ Bell
Laboratories, 1976. An attempt to unravel the intrica-
cies of troff.

Programming:

B. W. Kernighan and D. M. Ritchie, The C Program-
ming Language, Prentice-Hall, 1978. Contains a
tutorial introduction, complete discussions of all
language features, and the reference manual.

B. W. Kernighan and D. M. Ritchie, ‘‘UNIX Program-
ming,’’ Bell Laboratories, 1978. Describes how to
interface with the system from C programs: I/O calls,
signals, processes.

S. R. Bourne, ‘‘An Introduction to the UNIX Shell,’’
Bell Laboratories, 1978. An introduction and refer-
ence manual for the Version 7 shell. Mandatory
reading if you intend to make effective use of the
programming power of this shell.

S. C. Johnson, ‘‘Yacc — Yet Another Compiler-
Compiler,’’ Bell Laboratories CSTR 32, 1978.

M. E. Lesk, ‘‘Lex — A Lexical Analyzer Genera-
tor,’’ Bell Laboratories CSTR 39, 1975.

S. C. Johnson, ‘‘Lint, a C Program Checker,’’ Bell
Laboratories CSTR 65, 1977.

S. I. Feldman, ‘‘MAKE — A Program for Maintain-
ing Computer Programs,’’ Bell Laboratories CSTR
57, 1977.

J. F. Maranzano and S. R. Bourne, ‘‘A Tutorial Intro-
duction to ADB,’’ Bell Laboratories CSTR 62, 1977.
An introduction to a powerful but complex debugging
tool.

S. I. Feldman and P. J. Weinberger, ‘‘A Portable For-
tran 77 Compiler,’’ Bell Laboratories, 1978. A full
Fortran 77 for UNIX systems.

A Tutorial Introduction to the UNIX Text Editor

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Almost all text input on the UNIX† operating system is done with the text-editor ed.
This memorandum is a tutorial guide to help beginners get started with text editing.

Although it does not cover everything, it does discuss enough for most users’ day-
to-day needs. This includes printing, appending, changing, deleting, moving and
inserting entire lines of text; reading and writing files; context searching and line
addressing; the substitute command; the global commands; and the use of special char-
acters for advanced editing.

September 21, 1978

_ ______________
†UNIX is a Trademark of Bell Laboratories.

A Tutorial Introduction to the UNIX Text Editor

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

Ed is a ‘‘text editor’’, that is, an interactive pro-
gram for creating and modifying ‘‘text’’, using direc-
tions provided by a user at a terminal. The text is
often a document like this one, or a program or
perhaps data for a program.

This introduction is meant to simplify learning ed.
The recommended way to learn ed is to read this
document, simultaneously using ed to follow the
examples, then to read the description in section I of
the UNIX Programmer’s Manual, all the while experi-
menting with ed. (Solicitation of advice from experi-
enced users is also useful.)

Do the exercises! They cover material not com-
pletely discussed in the actual text. An appendix
summarizes the commands.

Disclaimer

This is an introduction and a tutorial. For this
reason, no attempt is made to cover more than a part
of the facilities that ed offers (although this fraction
includes the most useful and frequently used parts).
When you have mastered the Tutorial, try Advanced
Editing on UNIX. Also, there is not enough space to
explain basic UNIX procedures. We will assume that
you know how to log on to UNIX, and that you have
at least a vague understanding of what a file is. For
more on that, read UNIX for Beginners.

You must also know what character to type as the
end-of-line on your particular terminal. This charac-
ter is the RETURN key on most terminals.
Throughout, we will refer to this character, whatever
it is, as RETURN.

Getting Started

We’ll assume that you have logged in to your
system and it has just printed the prompt character,
usually either a $ or a %. The easiest way to get ed
is to type

e ed d ((f fo ol ll lo ow we ed d b by y a a r re et tu ur rn n))

You are now ready to go – ed is waiting for you to
tell it what to do.

Creating Text – the Append command ‘‘a’’

As your first problem, suppose you want to create
some text starting from scratch. Perhaps you are typ-
ing the very first draft of a paper; clearly it will have
to start somewhere, and undergo modifications later.
This section will show how to get some text in, just
to get started. Later we’ll talk about how to change
it.

When ed is first started, it is rather like working
with a blank piece of paper – there is no text or
information present. This must be supplied by the
person using ed; it is usually done by typing in the
text, or by reading it into ed from a file. We will
start by typing in some text, and return shortly to how
to read files.

First a bit of terminology. In ed jargon, the text
being worked on is said to be ‘‘kept in a buffer.’’
Think of the buffer as a work space, if you like, or
simply as the information that you are going to be
editing. In effect the buffer is like the piece of paper,
on which we will write things, then change some of
them, and finally file the whole thing away for
another day.

The user tells ed what to do to his text by typing
instructions called ‘‘commands.’’ Most commands
consist of a single letter, which must be typed in
lower case. Each command is typed on a separate
line. (Sometimes the command is preceded by infor-
mation about what line or lines of text are to be
affected – we will discuss these shortly.) Ed makes
no response to most commands – there is no prompt-
ing or typing of messages like ‘‘ready’’. (This
silence is preferred by experienced users, but some-
times a hangup for beginners.)

The first command is append, written as the letter

a a

all by itself. It means ‘‘append (or add) text lines to
the buffer, as I type them in.’’ Appending is rather
like writing fresh material on a piece of paper.

So to enter lines of text into the buffer, just type
an a followed by a RETURN, followed by the lines of
text you want, like this:

- - 2 2 - -

a a
N No ow w i is s t th he e t ti im me e
f fo or r a al ll l g go oo od d m me en n
t to o c co om me e t to o t th he e a ai id d o of f t th he ei ir r p pa ar rt ty y. .
. .

The only way to stop appending is to type a line
that contains only a period. The ‘‘.’’ is used to tell
ed that you have finished appending. (Even experi-
enced users forget that terminating ‘‘.’’ sometimes. If
ed seems to be ignoring you, type an extra line with
just ‘‘.’’ on it. You may then find you’ve added
some garbage lines to your text, which you’ll have to
take out later.)

After the append command has been done, the
buffer will contain the three lines

N No ow w i is s t th he e t ti im me e
f fo or r a al ll l g go oo od d m me en n
t to o c co om me e t to o t th he e a ai id d o of f t th he ei ir r p pa ar rt ty y. .

The ‘‘a’’ and ‘‘.’’ aren’t there, because they are not
text.

To add more text to what you already have, just
issue another a command, and continue typing.

Error Messages – ‘‘?’’

If at any time you make an error in the com-
mands you type to ed, it will tell you by typing

? ?

This is about as cryptic as it can be, but with practice,
you can usually figure out how you goofed.

Writing text out as a file – the Write command
‘‘w’’

It’s likely that you’ll want to save your text for
later use. To write out the contents of the buffer onto
a file, use the write command

w w

followed by the filename you want to write on. This
will copy the buffer’s contents onto the specified file
(destroying any previous information on the file). To
save the text on a file named junk, for example, type

w w j ju un nk k

Leave a space between w and the file name. Ed will
respond by printing the number of characters it wrote
out. In this case, ed would respond with

6 68 8

(Remember that blanks and the return character at the
end of each line are included in the character count.)
Writing a file just makes a copy of the text – the
buffer’s contents are not disturbed, so you can go on
adding lines to it. This is an important point. Ed at
all times works on a copy of a file, not the file itself.
No change in the contents of a file takes place until

you give a w command. (Writing out the text onto a
file from time to time as it is being created is a good
idea, since if the system crashes or if you make some
horrible mistake, you will lose all the text in the
buffer but any text that was written onto a file is rela-
tively safe.)

Leaving ed – the Quit command ‘‘q’’

To terminate a session with ed, save the text
you’re working on by writing it onto a file using the
w command, and then type the command

q q

which stands for quit. The system will respond with
the prompt character ($ or %). At this point your
buffer vanishes, with all its text, which is why you
want to write it out before quitting.†

Exercise 1:

Enter ed and create some text using

a a
. t te ex xt t
.

Write it out using w. Then leave ed with the q com-
mand, and print the file, to see that everything
worked. (To print a file, say

p pr r fi fil le en na am me e

or

c ca at t fi fil le en na am me e

in response to the prompt character. Try both.)

Reading text from a file – the Edit command ‘‘e’’

A common way to get text into the buffer is to
read it from a file in the file system. This is what
you do to edit text that you saved with the w com-
mand in a previous session. The edit command e
fetches the entire contents of a file into the buffer.
So if you had saved the three lines ‘‘Now is the
time’’, etc., with a w command in an earlier session,
the ed command

e e j ju un nk k

would fetch the entire contents of the file junk into
the buffer, and respond

6 68 8

which is the number of characters in junk. If any-
thing was already in the buffer, it is deleted first.

If you use the e command to read a file into the
buffer, then you need not use a file name after a sub-
sequent w command; ed remembers the last file name
_ ____________________
† Actually, ed will print ? if you try to quit without writing.
At that point, write if you want; if not, another q will get you
out regardless.

- 3 -

used in an e command, and w will write on this file.
Thus a good way to operate is

e ed d
e e fi fil le e
[[e ed di it ti in ng g s se es ss si io on n]]
w w
q q

This way, you can simply say w from time to time,
and be secure in the knowledge that if you got the file
name right at the beginning, you are writing into the
proper file each time.

You can find out at any time what file name ed is
remembering by typing the file command f. In this
example, if you typed

f f

ed would reply

j ju un nk k

Reading text from a file – the Read command ‘‘r’’

Sometimes you want to read a file into the buffer
without destroying anything that is already there.
This is done by the read command r. The command

r r j ju un nk k

will read the file junk into the buffer; it adds it to the
end of whatever is already in the buffer. So if you
do a read after an edit:

e e j ju un nk k
r r j ju un nk k

the buffer will contain two copies of the text (six
lines).

N No ow w i is s t th he e t ti im me e
f fo or r a al ll l g go oo od d m me en n
t to o c co om me e t to o t th he e a ai id d o of f t th he ei ir r p pa ar rt ty y. .
N No ow w i is s t th he e t ti im me e
f fo or r a al ll l g go oo od d m me en n
t to o c co om me e t to o t th he e a ai id d o of f t th he ei ir r p pa ar rt ty y. .

Like the w and e commands, r prints the number of
characters read in, after the reading operation is com-
plete.

Generally speaking, r is much less used than e.

Exercise 2:

Experiment with the e command – try reading
and printing various files. You may get an error
?name, where name is the name of a file; this means
that the file doesn’t exist, typically because you
spelled the file name wrong, or perhaps that you are
not allowed to read or write it. Try alternately read-
ing and appending to see that they work similarly.
Verify that

e ed d fi fil le en na am me e

is exactly equivalent to

e ed d
e e fi fil le en na am me e

What does

f f fi fil le en na am me e

do?

Printing the contents of the buffer – the Print
command ‘‘p’’

To print or list the contents of the buffer (or parts
of it) on the terminal, use the print command

p p

The way this is done is as follows. Specify the lines
where you want printing to begin and where you want
it to end, separated by a comma, and followed by the
letter p. Thus to print the first two lines of the
buffer, for example, (that is, lines 1 through 2) say

1 1, ,2 2p p ((s st ta ar rt ti in ng g l li in ne e= =1 1, , e en nd di in ng g l li in ne e= =2 2 p p))

Ed will respond with

N No ow w i is s t th he e t ti im me e
f fo or r a al ll l g go oo od d m me en n

Suppose you want to print all the lines in the
buffer. You could use 1,3p as above if you knew
there were exactly 3 lines in the buffer. But in gen-
eral, you don’t know how many there are, so what do
you use for the ending line number? Ed provides a
shorthand symbol for ‘‘line number of last line in
buffer’’ – the dollar sign $. Use it this way:

1 1, ,$ $p p

This will print all the lines in the buffer (line 1 to last
line.) If you want to stop the printing before it is
finished, push the DEL or Delete key; ed will type

? ?

and wait for the next command.

To print the last line of the buffer, you could use

$ $, ,$ $p p

but ed lets you abbreviate this to

$ $p p

You can print any single line by typing the line
number followed by a p. Thus

1 1p p

produces the response

N No ow w i is s t th he e t ti im me e

which is the first line of the buffer.

In fact, ed lets you abbreviate even further: you
can print any single line by typing just the line
number – no need to type the letter p. So if you say

- 4 -

$ $

ed will print the last line of the buffer.

You can also use $ in combinations like

$ $– – 1 1, ,$ $p p

which prints the last two lines of the buffer. This
helps when you want to see how far you got in typ-
ing.

Exercise 3:

As before, create some text using the a command
and experiment with the p command. You will find,
for example, that you can’t print line 0 or a line
beyond the end of the buffer, and that attempts to
print a buffer in reverse order by saying

3 3, ,1 1p p

don’t work.

The current line – ‘‘Dot’’ or ‘‘.’’

Suppose your buffer still contains the six lines as
above, that you have just typed

1 1, ,3 3p p

and ed has printed the three lines for you. Try typing
just

p p ((n no o l li in ne e n nu um mb be er rs s))

This will print

t to o c co om me e t to o t th he e a ai id d o of f t th he ei ir r p pa ar rt ty y. .

which is the third line of the buffer. In fact it is the
last (most recent) line that you have done anything
with. (You just printed it!) You can repeat this p
command without line numbers, and it will continue
to print line 3.

The reason is that ed maintains a record of the
last line that you did anything to (in this case, line 3,
which you just printed) so that it can be used instead
of an explicit line number. This most recent line is
referred to by the shorthand symbol

. . ((p pr ro on no ou un nc ce ed d ‘ ‘‘ ‘d do ot t’ ’’ ’)). .

Dot is a line number in the same way that $ is; it
means exactly ‘‘the current line’’, or loosely, ‘‘the
line you most recently did something to.’’ You can
use it in several ways – one possibility is to say

. ., ,$ $p p

This will print all the lines from (including) the
current line to the end of the buffer. In our example
these are lines 3 through 6.

Some commands change the value of dot, while
others do not. The p command sets dot to the
number of the last line printed; the last command will
set both . and $ to 6.

Dot is most useful when used in combinations
like this one:

. .+ +1 1 ((o or r e eq qu ui iv va al le en nt tl ly y, , . .+ +1 1p p))

This means ‘‘print the next line’’ and is a handy way
to step slowly through a buffer. You can also say

. .– – 1 1 ((o or r . .– – 1 1p p))

which means ‘‘print the line before the current line.’’
This enables you to go backwards if you wish.
Another useful one is something like

. .– – 3 3, ,. .– – 1 1p p

which prints the previous three lines.

Don’t forget that all of these change the value of
dot. You can find out what dot is at any time by typ-
ing

. .= =

Ed will respond by printing the value of dot.

Let’s summarize some things about the p com-
mand and dot. Essentially p can be preceded by 0, 1,
or 2 line numbers. If there is no line number given,
it prints the ‘‘current line’’, the line that dot refers to.
If there is one line number given (with or without the
letter p), it prints that line (and dot is set there); and
if there are two line numbers, it prints all the lines in
that range (and sets dot to the last line printed.) If
two line numbers are specified the first can’t be
bigger than the second (see Exercise 2.)

Typing a single return will cause printing of the
next line – it’s equivalent to .+1p. Try it. Try typ-
ing a – ; you will find that it’s equivalent to .– 1p.

Deleting lines: the ‘‘d’’ command

Suppose you want to get rid of the three extra
lines in the buffer. This is done by the delete com-
mand

d d

Except that d deletes lines instead of printing them,
its action is similar to that of p. The lines to be
deleted are specified for d exactly as they are for p:

starting line, ending line d d

Thus the command

4 4, ,$ $d d

deletes lines 4 through the end. There are now three
lines left, as you can check by using

1 1, ,$ $p p

And notice that $ now is line 3! Dot is set to the
next line after the last line deleted, unless the last line
deleted is the last line in the buffer. In that case, dot
is set to $.

- 5 -

Exercise 4:

Experiment with a, e, r, w, p and d until you are
sure that you know what they do, and until you
understand how dot, $, and line numbers are used.

If you are adventurous, try using line numbers
with a, r and w as well. You will find that a will
append lines after the line number that you specify
(rather than after dot); that r reads a file in after the
line number you specify (not necessarily at the end of
the buffer); and that w will write out exactly the lines
you specify, not necessarily the whole buffer. These
variations are sometimes handy. For instance you can
insert a file at the beginning of a buffer by saying

0 0r r fi fil le en na am me e

and you can enter lines at the beginning of the buffer
by saying

0 0a a
. text
. .

Notice that .w is very different from

. .
w w

Modifying text: the Substitute command ‘‘s’’

We are now ready to try one of the most impor-
tant of all commands – the substitute command

s s

This is the command that is used to change individual
words or letters within a line or group of lines. It is
what you use, for example, for correcting spelling
mistakes and typing errors.

Suppose that by a typing error, line 1 says

N No ow w i is s t th h t ti im me e

– the e has been left off the. You can use s to fix
this up as follows:

1 1s s/ /t th h/ /t th he e/ /

This says: ‘‘in line 1, substitute for the characters th
the characters the.’’ To verify that it works (ed will
not print the result automatically) say

p p

and get

N No ow w i is s t th he e t ti im me e

which is what you wanted. Notice that dot must have
been set to the line where the substitution took place,
since the p command printed that line. Dot is always
set this way with the s command.

The general way to use the substitute command is

starting-line, ending-line s s/ /change this/ /to this/ /

Whatever string of characters is between the first pair

of slashes is replaced by whatever is between the
second pair, in all the lines between starting-line and
ending-line. Only the first occurrence on each line is
changed, however. If you want to change every
occurrence, see Exercise 5. The rules for line
numbers are the same as those for p, except that dot
is set to the last line changed. (But there is a trap for
the unwary: if no substitution took place, dot is not
changed. This causes an error ? as a warning.)

Thus you can say

1 1, ,$ $s s/ /s sp pe el li in ng g/ /s sp pe el ll li in ng g/ /

and correct the first spelling mistake on each line in
the text. (This is useful for people who are consistent
misspellers!)

If no line numbers are given, the s command
assumes we mean ‘‘make the substitution on line
dot’’, so it changes things only on the current line.
This leads to the very common sequence

s s/ /s so om me et th hi in ng g/ /s so om me et th hi in ng g e el ls se e/ /p p

which makes some correction on the current line, and
then prints it, to make sure it worked out right. If it
didn’t, you can try again. (Notice that there is a p on
the same line as the s command. With few excep-
tions, p can follow any command; no other multi-
command lines are legal.)

It’s also legal to say

s s/ / / // /

which means ‘‘change the first string of characters to
‘‘nothing’’, i.e., remove them. This is useful for
deleting extra words in a line or removing extra
letters from words. For instance, if you had

N No ow wx xx x i is s t th he e t ti im me e

you can say

s s/ /x xx x/ // /p p

to get

N No ow w i is s t th he e t ti im me e

Notice that // (two adjacent slashes) means ‘‘no char-
acters’’, not a blank. There is a difference! (See
below for another meaning of //.)

Exercise 5:

Experiment with the substitute command. See
what happens if you substitute for some word on a
line with several occurrences of that word. For
example, do this:

a a
t th he e o ot th he er r s si id de e o of f t th he e c co oi in n
. .
s s/ /t th he e/ /o on n t th he e/ /p p

You will get

- - 6 6 - -

o on n t th he e o ot th he er r s si id de e o of f t th he e c co oi in n

A substitute command changes only the first
occurrence of the first string. You can change all
occurrences by adding a g (for ‘‘global’’) to the s
command, like this:

s s/ / / / / /g gp p

Try other characters instead of slashes to delimit the
two sets of characters in the s command – anything
should work except blanks or tabs.

(If you get funny results using any of the charac-
ters

ˆ ˆ . . $ $ [[∗ ∗ \ \ & &

read the section on ‘‘Special Characters’’.)

Context searching – ‘‘/ . . . /’’

With the substitute command mastered, you can
move on to another highly important idea of ed –
context searching.

Suppose you have the original three line text in
the buffer:

N No ow w i is s t th he e t ti im me e
f fo or r a al ll l g go oo od d m me en n
t to o c co om me e t to o t th he e a ai id d o of f t th he ei ir r p pa ar rt ty y. .

Suppose you want to find the line that contains their
so you can change it to the. Now with only three
lines in the buffer, it’s pretty easy to keep track of
what line the word their is on. But if the buffer con-
tained several hundred lines, and you’d been making
changes, deleting and rearranging lines, and so on,
you would no longer really know what this line
number would be. Context searching is simply a
method of specifying the desired line, regardless of
what its number is, by specifying some context on it.

The way to say ‘‘search for a line that contains
this particular string of characters’’ is to type

/ /string of characters we want to find/ /

For example, the ed command

/ /t th he ei ir r/ /

is a context search which is sufficient to find the
desired line – it will locate the next occurrence of the
characters between slashes (‘‘their’’). It also sets dot
to that line and prints the line for verification:

t to o c co om me e t to o t th he e a ai id d o of f t th he ei ir r p pa ar rt ty y. .

‘‘Next occurrence’’ means that ed starts looking for
the string at line .+1, searches to the end of the
buffer, then continues at line 1 and searches to line
dot. (That is, the search ‘‘wraps around’’ from $ to
1.) It scans all the lines in the buffer until it either
finds the desired line or gets back to dot again. If the
given string of characters can’t be found in any line,
ed types the error message

? ?

Otherwise it prints the line it found.

You can do both the search for the desired line
and a substitution all at once, like this:

/ /t th he ei ir r/ /s s/ /t th he ei ir r/ /t th he e/ /p p

which will yield

t to o c co om me e t to o t th he e a ai id d o of f t th he e p pa ar rt ty y. .

There were three parts to that last command: context
search for the desired line, make the substitution,
print the line.

The expression /their/ is a context search expres-
sion. In their simplest form, all context search
expressions are like this – a string of characters sur-
rounded by slashes. Context searches are inter-
changeable with line numbers, so they can be used by
themselves to find and print a desired line, or as line
numbers for some other command, like s. They were
used both ways in the examples above.

Suppose the buffer contains the three familiar
lines

N No ow w i is s t th he e t ti im me e
f fo or r a al ll l g go oo od d m me en n
t to o c co om me e t to o t th he e a ai id d o of f t th he ei ir r p pa ar rt ty y. .

Then the ed line numbers

/ /N No ow w/ /+ +1 1
/ /g go oo od d/ /
/ /p pa ar rt ty y/ /– – 1 1

are all context search expressions, and they all refer
to the same line (line 2). To make a change in line 2,
you could say

/ /N No ow w/ /+ +1 1s s/ /g go oo od d/ /b ba ad d/ /

or

/ /g go oo od d/ /s s/ /g go oo od d/ /b ba ad d/ /

or

/ /p pa ar rt ty y/ /– – 1 1s s/ /g go oo od d/ /b ba ad d/ /

The choice is dictated only by convenience. You
could print all three lines by, for instance

/ /N No ow w/ /, ,/ /p pa ar rt ty y/ /p p

or

/ /N No ow w/ /, ,/ /N No ow w/ /+ +2 2p p

or by any number of similar combinations. The first
one of these might be better if you don’t know how
many lines are involved. (Of course, if there were
only three lines in the buffer, you’d use

1 1, ,$ $p p

but not if there were several hundred.)

- 7 -

The basic rule is: a context search expression is
the same as a line number, so it can be used wher-
ever a line number is needed.

Exercise 6:

Experiment with context searching. Try a body
of text with several occurrences of the same string of
characters, and scan through it using the same context
search.

Try using context searches as line numbers for the
substitute, print and delete commands. (They can
also be used with r, w, and a.)

Try context searching using ?text? instead of
/text/. This scans lines in the buffer in reverse order
rather than normal. This is sometimes useful if you
go too far while looking for some string of characters
– it’s an easy way to back up.

(If you get funny results with any of the charac-
ters

ˆ ˆ . . $ $ [[∗ ∗ \ \ & &

read the section on ‘‘Special Characters’’.)

Ed provides a shorthand for repeating a context
search for the same string. For example, the ed line
number

/ /s st tr ri in ng g/ /

will find the next occurrence of string. It often hap-
pens that this is not the desired line, so the search
must be repeated. This can be done by typing merely

/ // /

This shorthand stands for ‘‘the most recently used
context search expression.’’ It can also be used as
the first string of the substitute command, as in

/ /s st tr ri in ng g1 1/ /s s/ // /s st tr ri in ng g2 2/ /

which will find the next occurrence of string1 and
replace it by string2. This can save a lot of typing.
Similarly

? ?? ?

means ‘‘scan backwards for the same expression.’’

Change and Insert – ‘‘c’’ and ‘‘i’’

This section discusses the change command

c c

which is used to change or replace a group of one or
more lines, and the insert command

i i

which is used for inserting a group of one or more
lines.

‘‘Change’’, written as

c c

is used to replace a number of lines with different
lines, which are typed in at the terminal. For exam-
ple, to change lines .+1 through $ to something else,
type

. .+ +1 1, ,$ $c c

. type the lines of text you want here

. .

The lines you type between the c command and the .
will take the place of the original lines between start
line and end line. This is most useful in replacing a
line or several lines which have errors in them.

If only one line is specified in the c command,
then just that line is replaced. (You can type in as
many replacement lines as you like.) Notice the use
of . to end the input – this works just like the . in
the append command and must appear by itself on a
new line. If no line number is given, line dot is
replaced. The value of dot is set to the last line you
typed in.

‘‘Insert’’ is similar to append – for instance

/ /s st tr ri in ng g/ /i i
. type the lines to be inserted here
. .

will insert the given text before the next line that con-
tains ‘‘string’’. The text between i and . is inserted
before the specified line. If no line number is
specified dot is used. Dot is set to the last line
inserted.

Exercise 7:

‘‘Change’’ is rather like a combination of delete
followed by insert. Experiment to verify that

start, end d d
i i
. . . text . . .
. .

is almost the same as

start, end c c
. . . text . . .
. .

These are not precisely the same if line $ gets
deleted. Check this out. What is dot?

Experiment with a and i, to see that they are
similar, but not the same. You will observe that

line-number a a
. text
. .

appends after the given line, while

line-number i i
. text
. .

inserts before it. Observe that if no line number is

- 8 -

given, i inserts before line dot, while a appends after
line dot.

Moving text around: the ‘‘m’’ command

The move command m is used for cutting and
pasting – it lets you move a group of lines from one
place to another in the buffer. Suppose you want to
put the first three lines of the buffer at the end
instead. You could do it by saying:

1 1, ,3 3w w t te em mp p
$ $r r t te em mp p
1 1, ,3 3d d

(Do you see why?) but you can do it a lot easier
with the m command:

1 1, ,3 3m m$ $

The general case is

start line, end line m m after this line

Notice that there is a third line to be specified – the
place where the moved stuff gets put. Of course the
lines to be moved can be specified by context
searches; if you had

F Fi ir rs st t p pa ar ra ag gr ra ap ph h
.
e en nd d o of f fi fir rs st t p pa ar ra ag gr ra ap ph h. .
S Se ec co on nd d p pa ar ra ag gr ra ap ph h
.
e en nd d o of f s se ec co on nd d p pa ar ra ag gr ra ap ph h. .

you could reverse the two paragraphs like this:

/ /S Se ec co on nd d/ /, ,/ /e en nd d o of f s se ec co on nd d/ /m m/ /F Fi ir rs st t/ /– – 1 1

Notice the – 1: the moved text goes after the line
mentioned. Dot gets set to the last line moved.

The global commands ‘‘g’’ and ‘‘v’’

The global command g is used to execute one or
more ed commands on all those lines in the buffer
that match some specified string. For example

g g/ /p pe el li in ng g/ /p p

prints all lines that contain peling. More usefully,

g g/ /p pe el li in ng g/ /s s/ // /p pe el ll li in ng g/ /g gp p

makes the substitution everywhere on the line, then
prints each corrected line. Compare this to

1 1, ,$ $s s/ /p pe el li in ng g/ /p pe el ll li in ng g/ /g gp p

which only prints the last line substituted. Another
subtle difference is that the g command does not give
a ? if peling is not found where the s command will.

There may be several commands (including a, c,
i, r, w, but not g); in that case, every line except the
last must end with a backslash \:

g g/ /x xx xx x/ /. .– – 1 1s s/ /a ab bc c/ /d de ef f/ /n n
. .+ +2 2s s/ /g gh hi i/ /j jk kl l/ /n n
. .– – 2 2, ,. .p p

makes changes in the lines before and after each line
that contains xxx, then prints all three lines.

The v command is the same as g, except that the
commands are executed on every line that does not
match the string following v:

v v/ / / /d d

deletes every line that does not contain a blank.

Special Characters

You may have noticed that things just don’t work
right when you used some characters like ., ∗, $, and
others in context searches and the substitute com-
mand. The reason is rather complex, although the
cure is simple. Basically, ed treats these characters as
special, with special meanings. For instance, in a
context search or the first string of the substitute com-
mand only, . means ‘‘any character,’’ not a period, so

/ /x x. .y y/ /

means ‘‘a line with an x, any character, and a y,’’
not just ‘‘a line with an x, a period, and a y.’’ A
complete list of the special characters that can cause
trouble is the following:

ˆ ˆ . . $ $ [[∗ ∗ \ \

Warning: The backslash character \ is special to ed.
For safety’s sake, avoid it where possible. If you
have to use one of the special characters in a substi-
tute command, you can turn off its magic meaning
temporarily by preceding it with the backslash. Thus

s s/ /\ \\ \\ \. .\ \∗ ∗/ /b ba ac ck ks sl la as sh h d do ot t s st ta ar r/ /

will change \.∗ into ‘‘backslash dot star’’.

Here is a hurried synopsis of the other special
characters. First, the circumflex ˆ signifies the begin-
ning of a line. Thus

/ /ˆ ˆs st tr ri in ng g/ /

finds string only if it is at the beginning of a line: it
will find

s st tr ri in ng g

but not

t th he e s st tr ri in ng g.

The dollar-sign $ is just the opposite of the
circumflex; it means the end of a line:

/ /s st tr ri in ng g$ $/ /

will only find an occurrence of string that is at the
end of some line. This implies, of course, that

/ /ˆ ˆs st tr ri in ng g$ $/ /

- - 9 9 - -

will find only a line that contains just string, and

/ /ˆ ˆ. .$ $/ /

finds a line containing exactly one character.

The character ., as we mentioned above, matches
anything;

/ /x x. .y y/ /

matches any of

x x+ +y y
x x– – y y
x x y y
x x. .y y

This is useful in conjunction with ∗, which is a
repetition character; a∗ is a shorthand for ‘‘any
number of a’s,’’ so .∗ matches any number of any-
things. This is used like this:

s s/ /. .∗ ∗/ /s st tu uf ff f/ /

which changes an entire line, or

s s/ /. .∗ ∗, ,/ // /

which deletes all characters in the line up to and
including the last comma. (Since .∗ finds the longest
possible match, this goes up to the last comma.)

[is used with] to form ‘‘character classes’’; for
example,

/ /[[0 01 12 23 34 45 56 67 78 89 9]]/ /

matches any single digit – any one of the characters
inside the braces will cause a match. This can be
abbreviated to [0– 9].

Finally, the & is another shorthand character – it
is used only on the right-hand part of a substitute
command where it means ‘‘whatever was matched on
the left-hand side’’. It is used to save typing. Sup-
pose the current line contained

N No ow w i is s t th he e t ti im me e

and you wanted to put parentheses around it. You
could just retype the line, but this is tedious. Or you
could say

s s/ /ˆ ˆ/ /((/ /
s s/ /$ $/ /))/ /

using your knowledge of ˆ and $. But the easiest
way uses the &:

s s/ /. .∗ ∗/ /((& &))/ /

This says ‘‘match the whole line, and replace it by
itself surrounded by parentheses.’’ The & can be
used several times in a line; consider using

s s/ /. .∗ ∗/ /& &? ? & &! !! !/ /

to produce

N No ow w i is s t th he e t ti im me e? ? N No ow w i is s t th he e t ti im me e! !! !

You don’t have to match the whole line, of
course: if the buffer contains

t th he e e en nd d o of f t th he e w wo or rl ld d

you could type

/ /w wo or rl ld d/ /s s/ // /& & i is s a at t h ha an nd d/ /

to produce

t th he e e en nd d o of f t th he e w wo or rl ld d i is s a at t h ha an nd d

Observe this expression carefully, for it illustrates
how to take advantage of ed to save typing. The
string /world/ found the desired line; the shorthand //
found the same word in the line; and the & saves you
from typing it again.

The & is a special character only within the
replacement text of a substitute command, and has no
special meaning elsewhere. You can turn off the spe-
cial meaning of & by preceding it with a \:

s s/ /a am mp pe er rs sa an nd d/ /\ \& &/ /

will convert the word ‘‘ampersand’’ into the literal
symbol & in the current line.

Summary of Commands and Line Numbers

The general form of ed commands is the com-
mand name, perhaps preceded by one or two line
numbers, and, in the case of e, r, and w, followed by
a file name. Only one command is allowed per line,
but a p command may follow any other command
(except for e, r, w and q).

a: Append, that is, add lines to the buffer (at line
dot, unless a different line is specified). Appending
continues until . is typed on a new line. Dot is set to
the last line appended.

c: Change the specified lines to the new text which
follows. The new lines are terminated by a ., as with
a. If no lines are specified, replace line dot. Dot is
set to last line changed.

d: Delete the lines specified. If none are specified,
delete line dot. Dot is set to the first undeleted line,
unless $ is deleted, in which case dot is set to $.

e: Edit new file. Any previous contents of the buffer
are thrown away, so issue a w beforehand.

f: Print remembered filename. If a name follows f
the remembered name will be set to it.

g: The command

g g/ /- -- -- -/ /c co om mm ma an nd ds s

will execute the commands on those lines that contain
---, which can be any context search expression.

i: Insert lines before specified line (or dot) until a . is
typed on a new line. Dot is set to last line inserted.

- 10 -

m: Move lines specified to after the line named after
m. Dot is set to the last line moved.

p: Print specified lines. If none specified, print line
dot. A single line number is equivalent to line-
number p. A single return prints .+1, the next line.

q: Quit ed. Wipes out all text in buffer if you give
it twice in a row without first giving a w command.

r: Read a file into buffer (at end unless specified
elsewhere.) Dot set to last line read.

s: The command

s s/ /s st tr ri in ng g1 1/ /s st tr ri in ng g2 2/ /

substitutes the characters string1 into string2 in the
specified lines. If no lines are specified, make the
substitution in line dot. Dot is set to last line in
which a substitution took place, which means that if
no substitution took place, dot is not changed. s
changes only the first occurrence of string1 on a line;
to change all of them, type a g after the final slash.

v: The command

v v/ /- -- -- -/ /c co om mm ma an nd ds s

executes commands on those lines that do not con-
tain ---.

w: Write out buffer onto a file. Dot is not changed.

.=: Print value of dot. (= by itself prints the value of
$.)

!: The line

! !c co om mm ma an nd d- -l li in ne e

causes command-line to be executed as a UNIX com-
mand.

/-----/: Context search. Search for next line which
contains this string of characters. Print it. Dot is set
to the line where string was found. Search starts at
.+1, wraps around from $ to 1, and continues to dot,
if necessary.

?-----?: Context search in reverse direction. Start
search at .– 1, scan to 1, wrap around to $.

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help secretaries, typists and programmers to make effec-
tive use of the UNIX† facilities for preparing and editing text. It provides explanations
and examples of

• special characters, line addressing and global commands in the editor ed;

• commands for ‘‘cut and paste’’ operations on files and parts of files, including
the mv, cp, cat and rm commands, and the r, w, m and t commands of the edi-
tor;

• editing scripts and editor-based programs like grep and sed.

Although the treatment is aimed at non-programmers, new users with any back-
ground should find helpful hints on how to get their jobs done more easily.

August 4, 1978

_ ______________
†UNIX is a Trademark of Bell Laboratories.

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

Although UNIX† provides remarkably effective
tools for text editing, that by itself is no guarantee
that everyone will automatically make the most effec-
tive use of them. In particular, people who are not
computer specialists — typists, secretaries, casual
users — often use the system less effectively than
they might.

This document is intended as a sequel to A
Tutorial Introduction to the UNIX Text Editor [1],
providing explanations and examples of how to edit
with less effort. (You should also be familiar with
the material in UNIX For Beginners [2].) Further
information on all commands discussed here can be
found in The UNIX Programmer’s Manual [3].

Examples are based on observations of users
and the difficulties they encounter. Topics covered
include special characters in searches and substitute
commands, line addressing, the global commands, and
line moving and copying. There are also brief discus-
sions of effective use of related tools, like those for
file manipulation, and those based on ed, like grep
and sed.

A word of caution. There is only one way to
learn to use something, and that is to use it. Reading
a description is no substitute for trying something. A
paper like this one should give you ideas about what
to try, but until you actually try something, you will
not learn it.

2. SPECIAL CHARACTERS

The editor ed is the primary interface to the
system for many people, so it is worthwhile to know
how to get the most out of ed for the least effort.

The next few sections will discuss shortcuts
and labor-saving devices. Not all of these will be
instantly useful to any one person, of course, but a
few will be, and the others should give you ideas to
store away for future use. And as always, until you
try these things, they will remain theoretical
knowledge, not something you have confidence in.

†UNIX is a Trademark of Bell Laboratories.

The List command ‘l’

ed provides two commands for printing the
contents of the lines you’re editing. Most people are
familiar with p, in combinations like

1,$p

to print all the lines you’re editing, or

s/abc/def/p

to change ‘abc’ to ‘def’ on the current line. Less
familiar is the list command l (the letter ‘l ’), which
gives slightly more information than p. In particular,
l makes visible characters that are normally invisible,
such as tabs and backspaces. If you list a line that
contains some of these, l will print each tab as −> and
each backspace as −<. This makes it much easier to
correct the sort of typing mistake that inserts extra
spaces adjacent to tabs, or inserts a backspace fol-
lowed by a space.

The l command also ‘folds’ long lines for
printing — any line that exceeds 72 characters is
printed on multiple lines; each printed line except the
last is terminated by a backslash \ \, so you can tell it
was folded. This is useful for printing long lines on
short terminals.

Occasionally the l command will print in a line
a string of numbers preceded by a backslash, such as
\ \07 or \ \16. These combinations are used to make
visible characters that normally don’t print, like form
feed or vertical tab or bell. Each such combination is
a single character. When you see such characters, be
wary — they may have surprising meanings when
printed on some terminals. Often their presence
means that your finger slipped while you were typing;
you almost never want them.

The Substitute Command ‘s’

Most of the next few sections will be taken up
with a discussion of the substitute command s. Since
this is the command for changing the contents of indi-
vidual lines, it probably has the most complexity of
any ed command, and the most potential for effective
use.

As the simplest place to begin, recall the
meaning of a trailing g after a substitute command.

- 2 -

With

s/this/that/

and

s/this/that/g

the first one replaces the first ‘this’ on the line with
‘that’. If there is more than one ‘this’ on the line, the
second form with the trailing g changes all of them.

Either form of the s command can be followed
by p or l to ‘print’ or ‘list’ (as described in the previ-
ous section) the contents of the line:

s/this/that/p
s/this/that/l
s/this/that/gp
s/this/that/gl

are all legal, and mean slightly different things.
Make sure you know what the differences are.

Of course, any s command can be preceded by
one or two ‘line numbers’ to specify that the substitu-
tion is to take place on a group of lines. Thus

1,$s/mispell/misspell/

changes the first occurrence of ‘mispell’ to ‘misspell’
on every line of the file. But

1,$s/mispell/misspell/g

changes every occurrence in every line (and this is
more likely to be what you wanted in this particular
case).

You should also notice that if you add a p or l
to the end of any of these substitute commands, only
the last line that got changed will be printed, not all
the lines. We will talk later about how to print all
the lines that were modified.

The Undo Command ‘u’

Occasionally you will make a substitution in a
line, only to realize too late that it was a ghastly mis-
take. The ‘undo’ command u lets you ‘undo’ the last
substitution: the last line that was substituted can be
restored to its previous state by typing the command

u

The Metacharacter ‘.’
As you have undoubtedly noticed when you

use ed, certain characters have unexpected meanings
when they occur in the left side of a substitute com-
mand, or in a search for a particular line. In the next
several sections, we will talk about these special char-
acters, which are often called ‘metacharacters’.

The first one is the period ‘.’. On the left side
of a substitute command, or in a search with ‘/.../’, ‘.’
stands for any single character. Thus the search

/x.y/

finds any line where ‘x’ and ‘y’ occur separated by a
single character, as in

x+y
x– y
x y
x.y

and so on. (We will use to stand for a space when-
ever we need to make it visible.)

Since ‘.’ matches a single character, that gives
you a way to deal with funny characters printed by l.
Suppose you have a line that, when printed with the l
command, appears as

.... th\ \07is

and you want to get rid of the \ \07 (which represents
the bell character, by the way).

The most obvious solution is to try

s/\ \07//

but this will fail. (Try it.) The brute force solution,
which most people would now take, is to re-type the
entire line. This is guaranteed, and is actually quite a
reasonable tactic if the line in question isn’t too big,
but for a very long line, re-typing is a bore. This is
where the metacharacter ‘.’ comes in handy. Since
‘\ \07’ really represents a single character, if we say

s/th.is/this/

the job is done. The ‘.’ matches the mysterious char-
acter between the ‘h’ and the ‘i’, whatever it is.

Bear in mind that since ‘.’ matches any single
character, the command

s/./,/

converts the first character on a line into a ‘,’, which
very often is not what you intended.

As is true of many characters in ed, the ‘.’ has
several meanings, depending on its context. This line
shows all three:

.s/././

The first ‘.’ is a line number, the number of the line
we are editing, which is called ‘line dot’. (We will
discuss line dot more in Section 3.) The second ‘.’ is
a metacharacter that matches any single character on
that line. The third ‘.’ is the only one that really is
an honest literal period. On the right side of a substi-
tution, ‘.’ is not special. If you apply this command
to the line

Now is the time.

the result will be

.ow is the time.

which is probably not what you intended.

- 3 -

The Backslash ‘\ \’

Since a period means ‘any character’, the ques-
tion naturally arises of what to do when you really
want a period. For example, how do you convert the
line

Now is the time.

into

Now is the time?

The backslash ‘\ \’ does the job. A backslash turns off
any special meaning that the next character might
have; in particular, ‘\ \.’ converts the ‘.’ from a ‘match
anything’ into a period, so you can use it to replace
the period in

Now is the time.

like this:

s/\ \./?/

The pair of characters ‘\ \.’ is considered by ed to be a
single real period.

The backslash can also be used when searching
for lines that contain a special character. Suppose
you are looking for a line that contains

.PP

The search

/.PP/

isn’t adequate, for it will find a line like

THE APPLICATION OF ...

because the ‘.’ matches the letter ‘A’. But if you say

/\ \.PP/

you will find only lines that contain ‘.PP’.

The backslash can also be used to turn off spe-
cial meanings for characters other than ‘.’. For exam-
ple, consider finding a line that contains a backslash.
The search

/\ \/

won’t work, because the ‘\ \’ isn’t a literal ‘\ \’, but
instead means that the second ‘/’ no longer delimits
the search. But by preceding a backslash with
another one, you can search for a literal backslash.
Thus

/\ \\ \/

does work. Similarly, you can search for a forward
slash ‘/’ with

/\ \//

The backslash turns off the meaning of the immedi-
ately following ‘/’ so that it doesn’t terminate the /.../
construction prematurely.

As an exercise, before reading further, find two
substitute commands each of which will convert the
line

\ \x\ \.\ \y

into the line

\ \x\ \y

Here are several solutions; verify that each
works as advertised.

s/\ \\ \\ \.//
s/x../x/
s/..y/y/

A couple of miscellaneous notes about
backslashes and special characters. First, you can use
any character to delimit the pieces of an s command:
there is nothing sacred about slashes. (But you must
use slashes for context searching.) For instance, in a
line that contains a lot of slashes already, like

//exec //sys.fort.go // etc...

you could use a colon as the delimiter — to delete all
the slashes, type

s:/::g

Second, if # and @ are your character erase
and line kill characters, you have to type \ \# and \ \@;
this is true whether you’re talking to ed or any other
program.

When you are adding text with a or i or c,
backslash is not special, and you should only put in
one backslash for each one you really want.

The Dollar Sign ‘$’

The next metacharacter, the ‘$’, stands for ‘the
end of the line’. As its most obvious use, suppose
you have the line

Now is the

and you wish to add the word ‘time’ to the end. Use
the $ like this:

s/$/ time/

to get

Now is the time

Notice that a space is needed before ‘time’ in the sub-
stitute command, or you will get

Now is thetime

As another example, replace the second comma
in the following line with a period without altering
the first:

Now is the time, for all good men,

The command needed is

- 4 -

s/,$/./

The $ sign here provides context to make specific
which comma we mean. Without it, of course, the s
command would operate on the first comma to pro-
duce

Now is the time. for all good men,

As another example, to convert

Now is the time.

into

Now is the time?

as we did earlier, we can use

s/.$/?/

Like ‘.’, the ‘$’ has multiple meanings depend-
ing on context. In the line

$s/$/$/

the first ‘$’ refers to the last line of the file, the
second refers to the end of that line, and the third is a
literal dollar sign, to be added to that line.

The Circumflex ‘ˆ’

The circumflex (or hat or caret) ‘ˆ’ stands for
the beginning of the line. For example, suppose you
are looking for a line that begins with ‘the’. If you
simply say

/the/

you will in all likelihood find several lines that con-
tain ‘the’ in the middle before arriving at the one you
want. But with

/ˆthe/

you narrow the context, and thus arrive at the desired
one more easily.

The other use of ‘ˆ’ is of course to enable you
to insert something at the beginning of a line:

s/ˆ/ /

places a space at the beginning of the current line.

Metacharacters can be combined. To search for
a line that contains only the characters

.PP

you can use the command

/ˆ\ \.PP$/

The Star ‘∗’

Suppose you have a line that looks like this:

text x y text

where text stands for lots of text, and there are some

indeterminate number of spaces between the x and the
y. Suppose the job is to replace all the spaces
between x and y by a single space. The line is too
long to retype, and there are too many spaces to
count. What now?

This is where the metacharacter ‘∗’ comes in
handy. A character followed by a star stands for as
many consecutive occurrences of that character as
possible. To refer to all the spaces at once, say

s/x ∗y/x y/

The construction ‘ ∗’ means ‘as many spaces as pos-
sible’. Thus ‘x ∗y’ means ‘an x, as many spaces as
possible, then a y’.

The star can be used with any character, not
just space. If the original example was instead

text x– – – – – – – – y text

then all ‘– ’ signs can be replaced by a single space
with the command

s/x– ∗y/x y/

Finally, suppose that the line was

text x..................y text

Can you see what trap lies in wait for the unwary? If
you blindly type

s/x.∗y/x y/

what will happen? The answer, naturally, is that it
depends. If there are no other x’s or y’s on the line,
then everything works, but it’s blind luck, not good
management. Remember that ‘.’ matches any single
character? Then ‘.∗’ matches as many single charac-
ters as possible, and unless you’re careful, it can eat
up a lot more of the line than you expected. If the
line was, for example, like this:

text x text x................y text y text

then saying

s/x.∗y/x y/

will take everything from the first ‘x’ to the last ‘y’,
which, in this example, is undoubtedly more than you
wanted.

The solution, of course, is to turn off the spe-
cial meaning of ‘.’ with ‘\ \.’:

s/x\ \.∗y/x y/

Now everything works, for ‘\ \.∗’ means ‘as many
periods as possible’.

There are times when the pattern ‘.∗’ is exactly
what you want. For example, to change

Now is the time for all good men

into

- 5 -

Now is the time.

use ‘.∗’ to eat up everything after the ‘for’:

s/ for.∗/./

There are a couple of additional pitfalls associ-
ated with ‘∗’ that you should be aware of. Most not-
able is the fact that ‘as many as possible’ means zero
or more. The fact that zero is a legitimate possibility
is sometimes rather surprising. For example, if our
line contained

text xy text x y text

and we said

s/x ∗y/x y/

the first ‘xy’ matches this pattern, for it consists of an
‘x’, zero spaces, and a ‘y’. The result is that the sub-
stitute acts on the first ‘xy’, and does not touch the
later one that actually contains some intervening
spaces.

The way around this, if it matters, is to specify
a pattern like

/x ∗y/

which says ‘an x, a space, then as many more spaces
as possible, then a y’, in other words, one or more
spaces.

The other startling behavior of ‘∗’ is again
related to the fact that zero is a legitimate number of
occurrences of something followed by a star. The
command

s/x∗/y/g

when applied to the line

abcdef

produces

yaybycydyeyfy

which is almost certainly not what was intended. The
reason for this behavior is that zero is a legal number
of matches, and there are no x’s at the beginning of
the line (so that gets converted into a ‘y’), nor
between the ‘a’ and the ‘b’ (so that gets converted
into a ‘y’), nor ... and so on. Make sure you really
want zero matches; if not, in this case write

s/xx∗/y/g

‘xx∗’ is one or more x’s.

The Brackets ‘[]’

Suppose that you want to delete any numbers
that appear at the beginning of all lines of a file. You
might first think of trying a series of commands like

1,$s/ˆ1∗//
1,$s/ˆ2∗//
1,$s/ˆ3∗//

and so on, but this is clearly going to take forever if
the numbers are at all long. Unless you want to
repeat the commands over and over until finally all
numbers are gone, you must get all the digits on one
pass. This is the purpose of the brackets [and].

The construction

[0123456789]

matches any single digit — the whole thing is called
a ‘character class’. With a character class, the job is
easy. The pattern ‘[0123456789]∗’ matches zero or
more digits (an entire number), so

1,$s/ˆ[0123456789]∗//

deletes all digits from the beginning of all lines.

Any characters can appear within a character
class, and just to confuse the issue there are essen-
tially no special characters inside the brackets; even
the backslash doesn’t have a special meaning. To
search for special characters, for example, you can
say

/[.\ \$ˆ[]/

Within [...], the ‘[’ is not special. To get a ‘]’ into a
character class, make it the first character.

It’s a nuisance to have to spell out the digits,
so you can abbreviate them as [0– 9]; similarly, [a– z]
stands for the lower case letters, and [A– Z] for upper
case.

As a final frill on character classes, you can
specify a class that means ‘none of the following
characters’. This is done by beginning the class with
a ‘ˆ’:

[ˆ0– 9]

stands for ‘any character except a digit’. Thus you
might find the first line that doesn’t begin with a tab
or space by a search like

/ˆ[ˆ(space)(tab)]/

Within a character class, the circumflex has a
special meaning only if it occurs at the beginning.
Just to convince yourself, verify that

/ˆ[ˆˆ]/

finds a line that doesn’t begin with a circumflex.

The Ampersand ‘&’

The ampersand ‘&’ is used primarily to save
typing. Suppose you have the line

Now is the time

and you want to make it

- 6 -

Now is the best time

Of course you can always say

s/the/the best/

but it seems silly to have to repeat the ‘the’. The ‘&’
is used to eliminate the repetition. On the right side
of a substitute, the ampersand means ‘whatever was
just matched’, so you can say

s/the/& best/

and the ‘&’ will stand for ‘the’. Of course this isn’t
much of a saving if the thing matched is just ‘the’,
but if it is something truly long or awful, or if it is
something like ‘.∗’ which matches a lot of text, you
can save some tedious typing. There is also much
less chance of making a typing error in the replace-
ment text. For example, to parenthesize a line,
regardless of its length,

s/.∗/(&)/

The ampersand can occur more than once on
the right side:

s/the/& best and & worst/

makes

Now is the best and the worst time

and

s/.∗/&? &!!/

converts the original line into

Now is the time? Now is the time!!

To get a literal ampersand, naturally the
backslash is used to turn off the special meaning:

s/ampersand/\ \&/

converts the word into the symbol. Notice that ‘&’ is
not special on the left side of a substitute, only on the
right side.

Substituting Newlines

ed provides a facility for splitting a single line
into two or more shorter lines by ‘substituting in a
newline’. As the simplest example, suppose a line
has gotten unmanageably long because of editing (or
merely because it was unwisely typed). If it looks
like

text xy text

you can break it between the ‘x’ and the ‘y’ like this:

s/xy/x\ \
y/

This is actually a single command, although it is
typed on two lines. Bearing in mind that ‘\ \’ turns off
special meanings, it seems relatively intuitive that a

‘\ \’ at the end of a line would make the newline there
no longer special.

You can in fact make a single line into several
lines with this same mechanism. As a large example,
consider underlining the word ‘very’ in a long line by
splitting ‘very’ onto a separate line, and preceding it
by the roff or nroff formatting command ‘.ul’.

text a very big text

The command

s/ very /\ \
.ul\ \
very\ \
/

converts the line into four shorter lines, preceding the
word ‘very’ by the line ‘.ul’, and eliminating the
spaces around the ‘very’, all at the same time.

When a newline is substituted in, dot is left
pointing at the last line created.

Joining Lines

Lines may also be joined together, but this is
done with the j command instead of s. Given the
lines

Now is
the time

and supposing that dot is set to the first of them, then
the command

j

joins them together. No blanks are added, which is
why we carefully showed a blank at the beginning of
the second line.

All by itself, a j command joins line dot to line
dot+1, but any contiguous set of lines can be joined.
Just specify the starting and ending line numbers.
For example,

1,$jp

joins all the lines into one big one and prints it.
(More on line numbers in Section 3.)

Rearranging a Line with \ \(... \ \)

(This section should be skipped on first read-
ing.) Recall that ‘&’ is a shorthand that stands for
whatever was matched by the left side of an s com-
mand. In much the same way you can capture
separate pieces of what was matched; the only differ-
ence is that you have to specify on the left side just
what pieces you’re interested in.

Suppose, for instance, that you have a file of
lines that consist of names in the form

Smith, A. B.
Jones, C.

- 7 -

and so on, and you want the initials to precede the
name, as in

A. B. Smith
C. Jones

It is possible to do this with a series of editing com-
mands, but it is tedious and error-prone. (It is
instructive to figure out how it is done, though.)

The alternative is to ‘tag’ the pieces of the pat-
tern (in this case, the last name, and the initials), and
then rearrange the pieces. On the left side of a sub-
stitution, if part of the pattern is enclosed between \ \(
and \ \), whatever matched that part is remembered,
and available for use on the right side. On the right
side, the symbol ‘\ \1’ refers to whatever matched the
first \ \(...\ \) pair, ‘\ \2’ to the second \ \(...\ \), and so on.

The command

1,$s/ˆ\ \([ˆ,]∗\ \), ∗\ \(.∗\ \)/\ \2 \ \1/

although hard to read, does the job. The first \ \(...\ \)
matches the last name, which is any string up to the
comma; this is referred to on the right side with ‘\ \1’.
The second \ \(...\ \) is whatever follows the comma and
any spaces, and is referred to as ‘\ \2’.

Of course, with any editing sequence this com-
plicated, it’s foolhardy to simply run it and hope.
The global commands g and v discussed in section 4
provide a way for you to print exactly those lines
which were affected by the substitute command, and
thus verify that it did what you wanted in all cases.

3. LINE ADDRESSING IN THE EDITOR

The next general area we will discuss is that of
line addressing in ed, that is, how you specify what
lines are to be affected by editing commands. We
have already used constructions like

1,$s/x/y/

to specify a change on all lines. And most users are
long since familiar with using a single newline (or
return) to print the next line, and with

/thing/

to find a line that contains ‘thing’. Less familiar,
surprisingly enough, is the use of

?thing?

to scan backwards for the previous occurrence of
‘thing’. This is especially handy when you realize
that the thing you want to operate on is back up the
page from where you are currently editing.

The slash and question mark are the only char-
acters you can use to delimit a context search, though
you can use essentially any character in a substitute
command.

Address Arithmetic

The next step is to combine the line numbers
like ‘.’, ‘$’, ‘/.../’ and ‘?...?’ with ‘+’ and ‘– ’. Thus

$– 1

is a command to print the next to last line of the
current file (that is, one line before line ‘$’). For
example, to recall how far you got in a previous edit-
ing session,

$– 5,$p

prints the last six lines. (Be sure you understand why
it’s six, not five.) If there aren’t six, of course, you’ll
get an error message.

As another example,

.– 3,.+3p

prints from three lines before where you are now (at
line dot) to three lines after, thus giving you a bit of
context. By the way, the ‘+’ can be omitted:

.– 3,.3p

is absolutely identical in meaning.

Another area in which you can save typing
effort in specifying lines is to use ‘– ’ and ‘+’ as line
numbers by themselves.

–

by itself is a command to move back up one line in
the file. In fact, you can string several minus signs
together to move back up that many lines:

– – –

moves up three lines, as does ‘– 3’. Thus

– 3,+3p

is also identical to the examples above.

Since ‘– ’ is shorter than ‘.– 1’, constructions
like

– ,.s/bad/good/

are useful. This changes ‘bad’ to ‘good’ on the previ-
ous line and on the current line.

‘+’ and ‘– ’ can be used in combination with
searches using ‘/.../’ and ‘?...?’, and with ‘$’. The
search

/thing/– –

finds the line containing ‘thing’, and positions you
two lines before it.

Repeated Searches

Suppose you ask for the search

/horrible thing/

and when the line is printed you discover that it isn’t
the horrible thing that you wanted, so it is necessary

- 8 -

to repeat the search again. You don’t have to re-type
the search, for the construction

//

is a shorthand for ‘the previous thing that was
searched for’, whatever it was. This can be repeated
as many times as necessary. You can also go back-
wards:

??

searches for the same thing, but in the reverse direc-
tion.

Not only can you repeat the search, but you
can use ‘//’ as the left side of a substitute command,
to mean ‘the most recent pattern’.

/horrible thing/
.... ed prints line with ‘horrible thing’ ...

s//good/p

To go backwards and change a line, say

??s//good/

Of course, you can still use the ‘&’ on the right hand
side of a substitute to stand for whatever got matched:

//s//& &/p

finds the next occurrence of whatever you searched
for last, replaces it by two copies of itself, then prints
the line just to verify that it worked.

Default Line Numbers and the Value of Dot

One of the most effective ways to speed up
your editing is always to know what lines will be
affected by a command if you don’t specify the lines
it is to act on, and on what line you will be posi-
tioned (i.e., the value of dot) when a command
finishes. If you can edit without specifying unneces-
sary line numbers, you can save a lot of typing.

As the most obvious example, if you issue a
search command like

/thing/

you are left pointing at the next line that contains
‘thing’. Then no address is required with commands
like s to make a substitution on that line, or p to print
it, or l to list it, or d to delete it, or a to append text
after it, or c to change it, or i to insert text before it.

What happens if there was no ‘thing’? Then
you are left right where you were — dot is
unchanged. This is also true if you were sitting on
the only ‘thing’ when you issued the command. The
same rules hold for searches that use ‘?...?’; the only
difference is the direction in which you search.

The delete command d leaves dot pointing at
the line that followed the last deleted line. When line
‘$’ gets deleted, however, dot points at the new line
‘$’.

The line-changing commands a, c and i by
default all affect the current line — if you give no
line number with them, a appends text after the
current line, c changes the current line, and i inserts
text before the current line.

a, c, and i behave identically in one respect —
when you stop appending, changing or inserting, dot
points at the last line entered. This is exactly what
you want for typing and editing on the fly. For
example, you can say

a
... text ...
... botch ... (minor error)

.
s/botch/correct/ (fix botched line)
a
... more text ...

without specifying any line number for the substitute
command or for the second append command. Or
you can say

a
... text ...
... horrible botch ... (major error)

.
c (replace entire line)
... fixed up line ...

You should experiment to determine what hap-
pens if you add no lines with a, c or i.

The r command will read a file into the text
being edited, either at the end if you give no address,
or after the specified line if you do. In either case,
dot points at the last line read in. Remember that you
can even say 0r to read a file in at the beginning of
the text. (You can also say 0a or 1i to start adding
text at the beginning.)

The w command writes out the entire file. If
you precede the command by one line number, that
line is written, while if you precede it by two line
numbers, that range of lines is written. The w com-
mand does not change dot: the current line remains
the same, regardless of what lines are written. This is
true even if you say something like

/ˆ\ \.AB/,/ˆ\ \.AE/w abstract

which involves a context search.

Since the w command is so easy to use, you
should save what you are editing regularly as you go
along just in case the system crashes, or in case you
do something foolish, like clobbering what you’re
editing.

The least intuitive behavior, in a sense, is that
of the s command. The rule is simple — you are left
sitting on the last line that got changed. If there were
no changes, then dot is unchanged.

- 9 -

To illustrate, suppose that there are three lines
in the buffer, and you are sitting on the middle one:

x1
x2
x3

Then the command

– ,+s/x/y/p

prints the third line, which is the last one changed.
But if the three lines had been

x1
y2
y3

and the same command had been issued while dot
pointed at the second line, then the result would be to
change and print only the first line, and that is where
dot would be set.

Semicolon ‘;’

Searches with ‘/.../’ and ‘?...?’ start at the
current line and move forward or backward respec-
tively until they either find the pattern or get back to
the current line. Sometimes this is not what is
wanted. Suppose, for example, that the buffer con-
tains lines like this:

.

.

.
ab
.
.
.
bc
.
.

Starting at line 1, one would expect that the command

/a/,/b/p

prints all the lines from the ‘ab’ to the ‘bc’ inclusive.
Actually this is not what happens. Both searches (for
‘a’ and for ‘b’) start from the same point, and thus
they both find the line that contains ‘ab’. The result
is to print a single line. Worse, if there had been a
line with a ‘b’ in it before the ‘ab’ line, then the print
command would be in error, since the second line
number would be less than the first, and it is illegal to
try to print lines in reverse order.

This is because the comma separator for line
numbers doesn’t set dot as each address is processed;
each search starts from the same place. In ed, the
semicolon ‘;’ can be used just like comma, with the
single difference that use of a semicolon forces dot to
be set at that point as the line numbers are being
evaluated. In effect, the semicolon ‘moves’ dot.
Thus in our example above, the command

/a/;/b/p

prints the range of lines from ‘ab’ to ‘bc’, because
after the ‘a’ is found, dot is set to that line, and then
‘b’ is searched for, starting beyond that line.

This property is most often useful in a very
simple situation. Suppose you want to find the
second occurrence of ‘thing’. You could say

/thing/
//

but this prints the first occurrence as well as the
second, and is a nuisance when you know very well
that it is only the second one you’re interested in.
The solution is to say

/thing/;//

This says to find the first occurrence of ‘thing’, set
dot to that line, then find the second and print only
that.

Closely related is searching for the second pre-
vious occurrence of something, as in

?something?;??

Printing the third or fourth or ... in either direction is
left as an exercise.

Finally, bear in mind that if you want to find
the first occurrence of something in a file, starting at
an arbitrary place within the file, it is not sufficient to
say

1;/thing/

because this fails if ‘thing’ occurs on line 1. But it is
possible to say

0;/thing/

(one of the few places where 0 is a legal line
number), for this starts the search at line 1.

Interrupting the Editor

As a final note on what dot gets set to, you
should be aware that if you hit the interrupt or delete
or rubout or break key while ed is doing a command,
things are put back together again and your state is
restored as much as possible to what it was before the
command began. Naturally, some changes are irrevo-
cable — if you are reading or writing a file or making
substitutions or deleting lines, these will be stopped in
some clean but unpredictable state in the middle
(which is why it is not usually wise to stop them).
Dot may or may not be changed.

Printing is more clear cut. Dot is not changed
until the printing is done. Thus if you print until you
see an interesting line, then hit delete, you are not sit-
ting on that line or even near it. Dot is left where it
was when the p command was started.

- 10 -

4. GLOBAL COMMANDS

The global commands g and v are used to per-
form one or more editing commands on all lines that
either contain (g) or don’t contain (v) a specified pat-
tern.

As the simplest example, the command

g/UNIX/p

prints all lines that contain the word ‘UNIX’. The
pattern that goes between the slashes can be anything
that could be used in a line search or in a substitute
command; exactly the same rules and limitations
apply.

As another example, then,

g/ˆ\ \./p

prints all the formatting commands in a file (lines that
begin with ‘.’).

The v command is identical to g, except that it
operates on those line that do not contain an
occurrence of the pattern. (Don’t look too hard for
mnemonic significance to the letter ‘v’.) So

v/ˆ\ \./p

prints all the lines that don’t begin with ‘.’ — the
actual text lines.

The command that follows g or v can be any-
thing:

g/ˆ\ \./d

deletes all lines that begin with ‘.’, and

g/ˆ$/d

deletes all empty lines.

Probably the most useful command that can
follow a global is the substitute command, for this
can be used to make a change and print each affected
line for verification. For example, we could change
the word ‘Unix’ to ‘UNIX’ everywhere, and verify
that it really worked, with

g/Unix/s//UNIX/gp

Notice that we used ‘//’ in the substitute command to
mean ‘the previous pattern’, in this case, ‘Unix’. The
p command is done on every line that matches the
pattern, not just those on which a substitution took
place.

The global command operates by making two
passes over the file. On the first pass, all lines that
match the pattern are marked. On the second pass,
each marked line in turn is examined, dot is set to
that line, and the command executed. This means
that it is possible for the command that follows a g or
v to use addresses, set dot, and so on, quite freely.

g/ˆ\ \.PP/+

prints the line that follows each ‘.PP’ command (the

signal for a new paragraph in some formatting pack-
ages). Remember that ‘+’ means ‘one line past dot’.
And

g/topic/?ˆ\ \.SH?1

searches for each line that contains ‘topic’, scans
backwards until it finds a line that begins ‘.SH’ (a
section heading) and prints the line that follows that,
thus showing the section headings under which ‘topic’
is mentioned. Finally,

g/ˆ\ \.EQ/+,/ˆ\ \.EN/– p

prints all the lines that lie between lines beginning
with ‘.EQ’ and ‘.EN’ formatting commands.

The g and v commands can also be preceded
by line numbers, in which case the lines searched are
only those in the range specified.

Multi-line Global Commands

It is possible to do more than one command
under the control of a global command, although the
syntax for expressing the operation is not especially
natural or pleasant. As an example, suppose the task
is to change ‘x’ to ‘y’ and ‘a’ to ‘b’ on all lines that
contain ‘thing’. Then

g/thing/s/x/y/\ \
s/a/b/

is sufficient. The ‘\ \’ signals the g command that the
set of commands continues on the next line; it ter-
minates on the first line that does not end with ‘\ \’.
(As a minor blemish, you can’t use a substitute com-
mand to insert a newline within a g command.)

You should watch out for this problem: the
command

g/x/s//y/\ \
s/a/b/

does not work as you expect. The remembered pat-
tern is the last pattern that was actually executed, so
sometimes it will be ‘x’ (as expected), and sometimes
it will be ‘a’ (not expected). You must spell it out,
like this:

g/x/s/x/y/\ \
s/a/b/

It is also possible to execute a, c and i com-
mands under a global command; as with other multi-
line constructions, all that is needed is to add a ‘\ \’ at
the end of each line except the last. Thus to add a
‘.nf’ and ‘.sp’ command before each ‘.EQ’ line, type

g/ˆ\ \.EQ/i\ \
.nf\ \
.sp

There is no need for a final line containing a ‘.’ to
terminate the i command, unless there are further
commands being done under the global. On the other

- 11 -

hand, it does no harm to put it in either.

5. CUT AND PASTE WITH UNIX COMMANDS

One editing area in which non-programmers
seem not very confident is in what might be called
‘cut and paste’ operations — changing the name of a
file, making a copy of a file somewhere else, moving
a few lines from one place to another in a file, insert-
ing one file in the middle of another, splitting a file
into pieces, and splicing two or more files together.

Yet most of these operations are actually quite
easy, if you keep your wits about you and go cau-
tiously. The next several sections talk about cut and
paste. We will begin with the UNIX commands for
moving entire files around, then discuss ed commands
for operating on pieces of files.

Changing the Name of a File

You have a file named ‘memo’ and you want it
to be called ‘paper’ instead. How is it done?

The UNIX program that renames files is called
mv (for ‘move’); it ‘moves’ the file from one name to
another, like this:

mv memo paper

That’s all there is to it: mv from the old name to the
new name.

mv oldname newname

Warning: if there is already a file around with the
new name, its present contents will be silently clob-
bered by the information from the other file. The one
exception is that you can’t move a file to itself —

mv x x

is illegal.

Making a Copy of a File

Sometimes what you want is a copy of a file
— an entirely fresh version. This might be because
you want to work on a file, and yet save a copy in
case something gets fouled up, or just because you’re
paranoid.

In any case, the way to do it is with the cp
command. (cp stands for ‘copy’; the system is big on
short command names, which are appreciated by
heavy users, but sometimes a strain for novices.)
Suppose you have a file called ‘good’ and you want
to save a copy before you make some dramatic edit-
ing changes. Choose a name — ‘savegood’ might be
acceptable — then type

cp good savegood

This copies ‘good’ onto ‘savegood’, and you now
have two identical copies of the file ‘good’. (If
‘savegood’ previously contained something, it gets
overwritten.)

Now if you decide at some time that you want
to get back to the original state of ‘good’, you can
say

mv savegood good

(if you’re not interested in ‘savegood’ any more), or

cp savegood good

if you still want to retain a safe copy.

In summary, mv just renames a file; cp makes
a duplicate copy. Both of them clobber the ‘target’
file if it already exists, so you had better be sure
that’s what you want to do before you do it.

Removing a File

If you decide you are really done with a file
forever, you can remove it with the rm command:

rm savegood

throws away (irrevocably) the file called ‘savegood’.

Putting Two or More Files Together

The next step is the familiar one of collecting
two or more files into one big one. This will be
needed, for example, when the author of a paper
decides that several sections need to be combined into
one. There are several ways to do it, of which the
cleanest, once you get used to it, is a program called
cat. (Not all programs have two-letter names.) cat is
short for ‘concatenate’, which is exactly what we
want to do.

Suppose the job is to combine the files ‘file1’
and ‘file2’ into a single file called ‘bigfile’. If you
say

cat file

the contents of ‘file’ will get printed on your terminal.
If you say

cat file1 file2

the contents of ‘file1’ and then the contents of ‘file2’
will both be printed on your terminal, in that order.
So cat combines the files, all right, but it’s not much
help to print them on the terminal — we want them
in ‘bigfile’.

Fortunately, there is a way. You can tell the
system that instead of printing on your terminal, you
want the same information put in a file. The way to
do it is to add to the command line the character >
and the name of the file where you want the output to
go. Then you can say

cat file1 file2 >bigfile

and the job is done. (As with cp and mv, you’re put-
ting something into ‘bigfile’, and anything that was
already there is destroyed.)

This ability to ‘capture’ the output of a pro-

- 12 -

gram is one of the most useful aspects of the system.
Fortunately it’s not limited to the cat program — you
can use it with any program that prints on your termi-
nal. We’ll see some more uses for it in a moment.

Naturally, you can combine several files, not
just two:

cat file1 file2 file3 ... >bigfile

collects a whole bunch.

Question: is there any difference between

cp good savegood

and

cat good >savegood

Answer: for most purposes, no. You might reason-
ably ask why there are two programs in that case,
since cat is obviously all you need. The answer is
that cp will do some other things as well, which you
can investigate for yourself by reading the manual.
For now we’ll stick to simple usages.

Adding Something to the End of a File

Sometimes you want to add one file to the end
of another. We have enough building blocks now
that you can do it; in fact before reading further it
would be valuable if you figured out how. To be
specific, how would you use cp, mv and/or cat to add
the file ‘good1’ to the end of the file ‘good’?

You could try

cat good good1 >temp
mv temp good

which is probably most direct. You should also
understand why

cat good good1 >good

doesn’t work. (Don’t practice with a good ‘good’!)

The easy way is to use a variant of >, called
>>. In fact, >> is identical to > except that instead of
clobbering the old file, it simply tacks stuff on at the
end. Thus you could say

cat good1 >>good

and ‘good1’ is added to the end of ‘good’. (And if
‘good’ didn’t exist, this makes a copy of ‘good1’
called ‘good’.)

6. CUT AND PASTE WITH THE EDITOR

Now we move on to manipulating pieces of
files — individual lines or groups of lines. This is
another area where new users seem unsure of them-
selves.

Filenames

The first step is to ensure that you know the ed
commands for reading and writing files. Of course
you can’t go very far without knowing r and w.
Equally useful, but less well known, is the ‘edit’ com-
mand e. Within ed, the command

e newfile

says ‘I want to edit a new file called newfile, without
leaving the editor.’ The e command discards what-
ever you’re currently working on and starts over on
newfile. It’s exactly the same as if you had quit with
the q command, then re-entered ed with a new file
name, except that if you have a pattern remembered,
then a command like // will still work.

If you enter ed with the command

ed file

ed remembers the name of the file, and any subse-
quent e, r or w commands that don’t contain a
filename will refer to this remembered file. Thus

ed file1
... (editing) ...

w (writes back in file1)
e file2 (edit new file, without leaving editor)
... (editing on file2) ...

w (writes back on file2)

(and so on) does a series of edits on various files
without ever leaving ed and without typing the name
of any file more than once. (As an aside, if you
examine the sequence of commands here, you can see
why many UNIX systems use e as a synonym for
ed.)

You can find out the remembered file name at
any time with the f command; just type f without a
file name. You can also change the name of the
remembered file name with f; a useful sequence is

ed precious
f junk
... (editing) ...

which gets a copy of a precious file, then uses f to
guarantee that a careless w command won’t clobber
the original.

Inserting One File into Another

Suppose you have a file called ‘memo’, and
you want the file called ‘table’ to be inserted just
after the reference to Table 1. That is, in ‘memo’
somewhere is a line that says

Table 1 shows that ...

and the data contained in ‘table’ has to go there,
probably so it will be formatted properly by nroff or
troff. Now what?

This one is easy. Edit ‘memo’, find ‘Table 1’,
and add the file ‘table’ right there:

- 13 -

ed memo
/Table 1/
Table 1 shows that ... [response from ed]
.r table

The critical line is the last one. As we said earlier,
the r command reads a file; here you asked for it to
be read in right after line dot. An r command
without any address adds lines at the end, so it is the
same as $r.

Writing out Part of a File

The other side of the coin is writing out part of
the document you’re editing. For example, maybe
you want to split out into a separate file that table
from the previous example, so it can be formatted and
tested separately. Suppose that in the file being
edited we have

.TS
...[lots of stuff]

.TE

which is the way a table is set up for the tbl program.
To isolate the table in a separate file called ‘table’,
first find the start of the table (the ‘.TS’ line), then
write out the interesting part:

/ˆ\ \.TS/
.TS [ed prints the line it found]
.,/ˆ\ \.TE/w table

and the job is done. If you are confident, you can do
it all at once with

/ˆ\ \.TS/;/ˆ\ \.TE/w table

The point is that the w command can write out
a group of lines, instead of the whole file. In fact,
you can write out a single line if you like; just give
one line number instead of two. For example, if you
have just typed a horribly complicated line and you
know that it (or something like it) is going to be
needed later, then save it — don’t re-type it. In the
editor, say

a
...lots of stuff...
...horrible line...
.
.w temp
a
...more stuff...
.
.r temp
a
...more stuff...
.

This last example is worth studying, to be sure you
appreciate what’s going on.

Moving Lines Around

Suppose you want to move a paragraph from
its present position in a paper to the end. How would
you do it? As a concrete example, suppose each
paragraph in the paper begins with the formatting
command ‘.PP’. Think about it and write down the
details before reading on.

The brute force way (not necessarily bad) is to
write the paragraph onto a temporary file, delete it
from its current position, then read in the temporary
file at the end. Assuming that you are sitting on the
‘.PP’ command that begins the paragraph, this is the
sequence of commands:

.,/ˆ\ \.PP/– w temp

.,//– d
$r temp

That is, from where you are now (‘.’) until one line
before the next ‘.PP’ (‘/ˆ\ \.PP/– ’) write onto ‘temp’.
Then delete the same lines. Finally, read ‘temp’ at
the end.

As we said, that’s the brute force way. The
easier way (often) is to use the move command m
that ed provides — it lets you do the whole set of
operations at one crack, without any temporary file.

The m command is like many other ed com-
mands in that it takes up to two line numbers in front
that tell what lines are to be affected. It is also fol-
lowed by a line number that tells where the lines are
to go. Thus

line1, line2 m line3

says to move all the lines between ‘line1’ and ‘line2’
after ‘line3’. Naturally, any of ‘line1’ etc., can be
patterns between slashes, $ signs, or other ways to
specify lines.

Suppose again that you’re sitting at the first
line of the paragraph. Then you can say

.,/ˆ\ \.PP/– m$

That’s all.

As another example of a frequent operation,
you can reverse the order of two adjacent lines by
moving the first one to after the second. Suppose that
you are positioned at the first. Then

m+

does it. It says to move line dot to after one line
after line dot. If you are positioned on the second
line,

m– –

does the interchange.

As you can see, the m command is more suc-
cinct and direct than writing, deleting and re-reading.
When is brute force better anyway? This is a matter
of personal taste — do what you have most

- 14 -

confidence in. The main difficulty with the m com-
mand is that if you use patterns to specify both the
lines you are moving and the target, you have to take
care that you specify them properly, or you may well
not move the lines you thought you did. The result
of a botched m command can be a ghastly mess.
Doing the job a step at a time makes it easier for you
to verify at each step that you accomplished what you
wanted to. It’s also a good idea to issue a w com-
mand before doing anything complicated; then if you
goof, it’s easy to back up to where you were.

Marks

ed provides a facility for marking a line with a
particular name so you can later reference it by name
regardless of its actual line number. This can be
handy for moving lines, and for keeping track of
them as they move. The mark command is k; the
command

kx

marks the current line with the name ‘x’. If a line
number precedes the k, that line is marked. (The
mark name must be a single lower case letter.) Now
you can refer to the marked line with the address

′x

Marks are most useful for moving things
around. Find the first line of the block to be moved,
and mark it with ′a. Then find the last line and mark
it with ′b. Now position yourself at the place where
the stuff is to go and say

′a,′bm.

Bear in mind that only one line can have a par-
ticular mark name associated with it at any given
time.

Copying Lines

We mentioned earlier the idea of saving a line
that was hard to type or used often, so as to cut down
on typing time. Of course this could be more than
one line; then the saving is presumably even greater.

ed provides another command, called t (for
‘transfer’) for making a copy of a group of one or
more lines at any point. This is often easier than
writing and reading.

The t command is identical to the m com-
mand, except that instead of moving lines it simply
duplicates them at the place you named. Thus

1,t

duplicates the entire contents that you are editing. A
more common use for t is for creating a series of
lines that differ only slightly. For example, you can
say

a
.......... x (long line)
.
t. (make a copy)
s/x/y/ (change it a bit)
t. (make third copy)
s/y/z/ (change it a bit)

and so on.

The Temporary Escape ‘!’

Sometimes it is convenient to be able to tem-
porarily escape from the editor to do some other UNIX

command, perhaps one of the file copy or move com-
mands discussed in section 5, without leaving the edi-
tor. The ‘escape’ command ! provides a way to do
this.

If you say

!any UNIX command

your current editing state is suspended, and the UNIX

command you asked for is executed. When the com-
mand finishes, ed will signal you by printing another
!; at that point you can resume editing.

You can really do any UNIX command, includ-
ing another ed. (This is quite common, in fact.) In
this case, you can even do another !.

7. SUPPORTING TOOLS

There are several tools and techniques that go
along with the editor, all of which are relatively easy
once you know how ed works, because they are all
based on the editor. In this section we will give
some fairly cursory examples of these tools, more to
indicate their existence than to provide a complete
tutorial. More information on each can be found in
[3].

Grep

Sometimes you want to find all occurrences of
some word or pattern in a set of files, to edit them or
perhaps just to verify their presence or absence. It
may be possible to edit each file separately and look
for the pattern of interest, but if there are many files
this can get very tedious, and if the files are really
big, it may be impossible because of limits in ed.

The program grep was invented to get around
these limitations. The search patterns that we have
described in the paper are often called ‘regular
expressions’, and ‘grep’ stands for

g/re/p

That describes exactly what grep does — it prints
every line in a set of files that contains a particular
pattern. Thus

grep ′thing′ file1 file2 file3 ...

- 15 -

finds ‘thing’ wherever it occurs in any of the files
‘file1’, ‘file2’, etc. grep also indicates the file in
which the line was found, so you can later edit it if
you like.

The pattern represented by ‘thing’ can be any
pattern you can use in the editor, since grep and ed
use exactly the same mechanism for pattern search-
ing. It is wisest always to enclose the pattern in the
single quotes ′...′ if it contains any non-alphabetic
characters, since many such characters also mean
something special to the UNIX command interpreter
(the ‘shell’). If you don’t quote them, the command
interpreter will try to interpret them before grep gets
a chance.

There is also a way to find lines that don’t
contain a pattern:

grep – v ′thing′ file1 file2 ...

finds all lines that don’t contains ‘thing’. The – v
must occur in the position shown. Given grep and
grep – v, it is possible to do things like selecting all
lines that contain some combination of patterns. For
example, to get all lines that contain ‘x’ but not ‘y’:

grep x file...  grep – v y

(The notation  is a ‘pipe’, which causes the output
of the first command to be used as input to the
second command; see [2].)

Editing Scripts

If a fairly complicated set of editing operations
is to be done on a whole set of files, the easiest thing
to do is to make up a ‘script’, i.e., a file that contains
the operations you want to perform, then apply this
script to each file in turn.

For example, suppose you want to change
every ‘Unix’ to ‘UNIX’ and every ‘Gcos’ to ‘GCOS’
in a large number of files. Then put into the file
‘script’ the lines

g/Unix/s//UNIX/g
g/Gcos/s//GCOS/g
w
q

Now you can say

ed file1 <script
ed file2 <script
...

This causes ed to take its commands from the
prepared script. Notice that the whole job has to be
planned in advance.

And of course by using the UNIX command
interpreter, you can cycle through a set of files
automatically, with varying degrees of ease.

Sed

sed (‘stream editor’) is a version of the editor
with restricted capabilities but which is capable of
processing unlimited amounts of input. Basically sed
copies its input to its output, applying one or more
editing commands to each line of input.

As an example, suppose that we want to do the
‘Unix’ to ‘UNIX’ part of the example given above,
but without rewriting the files. Then the command

sed ′s/Unix/UNIX/g′ file1 file2 ...

applies the command ‘s/Unix/UNIX/g’ to all lines
from ‘file1’, ‘file2’, etc., and copies all lines to the
output. The advantage of using sed in such a case is
that it can be used with input too large for ed to han-
dle. All the output can be collected in one place,
either in a file or perhaps piped into another program.

If the editing transformation is so complicated
that more than one editing command is needed, com-
mands can be supplied from a file, or on the com-
mand line, with a slightly more complex syntax. To
take commands from a file, for example,

sed – f cmdfile input– files...

sed has further capabilities, including condi-
tional testing and branching, which we cannot go into
here.

Acknowledgement

I am grateful to Ted Dolotta for his careful
reading and valuable suggestions.

References

[1] Brian W. Kernighan, A Tutorial Introduction to
the UNIX Text Editor, Bell Laboratories inter-
nal memorandum.

[2] Brian W. Kernighan, UNIX For Beginners,
Bell Laboratories internal memorandum.

[3] Ken L. Thompson and Dennis M. Ritchie, The
UNIX Programmer’s Manual. Bell Labora-
tories.

An Introduction to the UNIX Shell

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The shell is a command programming language that provides an interface to the UNIX†
operating system. Its features include control-flow primitives, parameter passing, vari-
ables and string substitution. Constructs such as while, if then else, case and for are
available. Two-way communication is possible between the shell and commands.
String-valued parameters, typically file names or flags, may be passed to a command.
A return code is set by commands that may be used to determine control-flow, and the
standard output from a command may be used as shell input.

The shell can modify the environment in which commands run. Input and output can
be redirected to files, and processes that communicate through ‘pipes’ can be invoked.
Commands are found by searching directories in the file system in a sequence that can
be defined by the user. Commands can be read either from the terminal or from a file,
which allows command procedures to be stored for later use.

November 12, 1978

_ ______________
†UNIX is a Trademark of Bell Laboratories.

An Introduction to the UNIX Shell

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

1.0 Introduction

The shell is both a command language and a programming language that provides an interface to the
UNIX operating system. This memorandum describes, with examples, the UNIX shell. The first section
covers most of the everyday requirements of terminal users. Some familiarity with UNIX is an advan-
tage when reading this section; see, for example, "UNIX for beginners".1 Section 2 describes those
features of the shell primarily intended for use within shell procedures. These include the control-flow
primitives and string-valued variables provided by the shell. A knowledge of a programming language
would be a help when reading this section. The last section describes the more advanced features of the
shell. References of the form "see pipe (2)" are to a section of the UNIX manual.2

1.1 Simple commands

Simple commands consist of one or more words separated by blanks. The first word is the name of the
command to be executed; any remaining words are passed as arguments to the command. For example,

who

is a command that prints the names of users logged in. The command

ls −l

prints a list of files in the current directory. The argument −l tells ls to print status information, size and
the creation date for each file.

1.2 Background commands

To execute a command the shell normally creates a new process and waits for it to finish. A command
may be run without waiting for it to finish. For example,

cc pgm.c &

calls the C compiler to compile the file pgm.c . The trailing & is an operator that instructs the shell not
to wait for the command to finish. To help keep track of such a process the shell reports its process
number following its creation. A list of currently active processes may be obtained using the ps com-
mand.

1.3 Input output redirection

Most commands produce output on the standard output that is initially connected to the terminal. This
output may be sent to a file by writing, for example,

ls −l >file

The notation >file is interpreted by the shell and is not passed as an argument to ls. If file does not exist
then the shell creates it; otherwise the original contents of file are replaced with the output from ls. Out-
put may be appended to a file using the notation

ls −l > >file

In this case file is also created if it does not already exist.

- 2 -

The standard input of a command may be taken from a file instead of the terminal by writing, for exam-
ple,

wc <file

The command wc reads its standard input (in this case redirected from file) and prints the number of
characters, words and lines found. If only the number of lines is required then

wc −l <file

could be used.

1.4 Pipelines and filters

The standard output of one command may be connected to the standard input of another by writing the
‘pipe’ operator, indicated by | , as in,

ls −l | wc

Two commands connected in this way constitute a pipeline and the overall effect is the same as

ls −l >file; wc <file

except that no file is used. Instead the two processes are connected by a pipe (see pipe (2)) and are run
in parallel. Pipes are unidirectional and synchronization is achieved by halting wc when there is nothing
to read and halting ls when the pipe is full.

A filter is a command that reads its standard input, transforms it in some way, and prints the result as
output. One such filter, grep, selects from its input those lines that contain some specified string. For
example,

ls | grep old

prints those lines, if any, of the output from ls that contain the string old. Another useful filter is sort.
For example,

who | sort

will print an alphabetically sorted list of logged in users.

A pipeline may consist of more than two commands, for example,

ls | grep old | wc −l

prints the number of file names in the current directory containing the string old.

1.5 File name generation

Many commands accept arguments which are file names. For example,

ls −l main.c

prints information relating to the file main.c .

The shell provides a mechanism for generating a list of file names that match a pattern. For example,

ls −l *.c

generates, as arguments to ls, all file names in the current directory that end in .c . The character * is a
pattern that will match any string including the null string. In general patterns are specified as follows.

* Matches any string of characters including the null string.

? Matches any single character.

[. . .] Matches any one of the characters enclosed. A pair of characters separated by a minus
will match any character lexically between the pair.

For example,

- 3 -

[a−z]*
matches all names in the current directory beginning with one of the letters a through z.

/usr/fred/test/?

matches all names in the directory /usr/fred/test that consist of a single character. If no file name is
found that matches the pattern then the pattern is passed, unchanged, as an argument.

This mechanism is useful both to save typing and to select names according to some pattern. It may
also be used to find files. For example,

echo /usr/fred/*/core

finds and prints the names of all core files in sub-directories of /usr/fred . (echo is a standard UNIX
command that prints its arguments, separated by blanks.) This last feature can be expensive, requiring a
scan of all sub-directories of /usr/fred .

There is one exception to the general rules given for patterns. The character ‘.’ at the start of a file
name must be explicitly matched.

echo *
will therefore echo all file names in the current directory not beginning with ‘.’ .

echo .*
will echo all those file names that begin with ‘.’ . This avoids inadvertent matching of the names ‘.’ and
‘..’ which mean ‘the current directory’ and ‘the parent directory’ respectively. (Notice that ls
suppresses information for the files ‘.’ and ‘..’ .)

1.6 Quoting

Characters that have a special meaning to the shell, such as < > * ? | & , are called metacharacters. A
complete list of metacharacters is given in appendix B. Any character preceded by a \ is quoted and
loses its special meaning, if any. The \ is elided so that

echo \?

will echo a single ? , and

echo \\

will echo a single \ . To allow long strings to be continued over more than one line the sequence \new-
line is ignored.

\ is convenient for quoting single characters. When more than one character needs quoting the above
mechanism is clumsy and error prone. A string of characters may be quoted by enclosing the string
between single quotes. For example,

echo xx´****´xx

will echo

xx****xx

The quoted string may not contain a single quote but may contain newlines, which are preserved. This
quoting mechanism is the most simple and is recommended for casual use.

A third quoting mechanism using double quotes is also available that prevents interpretation of some but
not all metacharacters. Discussion of the details is deferred to section 3.4 .

- 4 -

1.7 Prompting

When the shell is used from a terminal it will issue a prompt before reading a command. By default
this prompt is ‘$ ’ . It may be changed by saying, for example,

PS1=yesdear

that sets the prompt to be the string yesdear . If a newline is typed and further input is needed then the
shell will issue the prompt ‘> ’ . Sometimes this can be caused by mistyping a quote mark. If it is
unexpected then an interrupt (DEL) will return the shell to read another command. This prompt may be
changed by saying, for example,

PS2=more

1.8 The shell and login

Following login (1) the shell is called to read and execute commands typed at the terminal. If the user’s
login directory contains the file .profile then it is assumed to contain commands and is read by the shell
before reading any commands from the terminal.

1.9 Summary

• ls
Print the names of files in the current directory.

• ls >file
Put the output from ls into file.

• ls | wc −l
Print the number of files in the current directory.

• ls | grep old
Print those file names containing the string old.

• ls | grep old | wc −l
Print the number of files whose name contains the string old.

• cc pgm.c &
Run cc in the background.

- 5 -

2.0 Shell procedures

The shell may be used to read and execute commands contained in a file. For example,

sh file [args . . .]

calls the shell to read commands from file. Such a file is called a command procedure or shell pro-
cedure. Arguments may be supplied with the call and are referred to in file using the positional parame-
ters $1, $2, For example, if the file wg contains

who | grep $1

then

sh wg fred

is equivalent to

who | grep fred

UNIX files have three independent attributes, read, write and execute. The UNIX command chmod (1)
may be used to make a file executable. For example,

chmod +x wg

will ensure that the file wg has execute status. Following this, the command

wg fred

is equivalent to

sh wg fred

This allows shell procedures and programs to be used interchangeably. In either case a new process is
created to run the command.

As well as providing names for the positional parameters, the number of positional parameters in the call
is available as $# . The name of the file being executed is available as $0 .

A special shell parameter $* is used to substitute for all positional parameters except $0 . A typical use
of this is to provide some default arguments, as in,

nroff −T450 −ms $*
which simply prepends some arguments to those already given.

2.1 Control flow - for

A frequent use of shell procedures is to loop through the arguments ($1, $2, . . .) executing commands
once for each argument. An example of such a procedure is tel that searches the file /usr/lib/telnos that
contains lines of the form

. . .
fred mh0123
bert mh0789
. . .

The text of tel is

for i
do grep $i /usr/lib/telnos; done

The command

tel fred

prints those lines in /usr/lib/telnos that contain the string fred .

- 6 -

tel fred bert

prints those lines containing fred followed by those for bert.

The for loop notation is recognized by the shell and has the general form

for name in w1 w2 . . .
do command-list
done

A command-list is a sequence of one or more simple commands separated or terminated by a newline or
semicolon. Furthermore, reserved words like do and done are only recognized following a newline or
semicolon. name is a shell variable that is set to the words w1 w2 . . . in turn each time the command-
list following do is executed. If in w1 w2 . . . is omitted then the loop is executed once for each posi-
tional parameter; that is, in $* is assumed.

Another example of the use of the for loop is the create command whose text is

for i do >$i; done

The command

create alpha beta

ensures that two empty files alpha and beta exist and are empty. The notation >file may be used on its
own to create or clear the contents of a file. Notice also that a semicolon (or newline) is required before
done.

2.2 Control flow - case

A multiple way branch is provided for by the case notation. For example,

case $# in
1) cat > >$1 ;;
2) cat > >$2 <$1 ;;

*) echo ´usage: append [from] to´ ;;
esac

is an append command. When called with one argument as

append file

$# is the string 1 and the standard input is copied onto the end of file using the cat command.

append file1 file2

appends the contents of file1 onto file2. If the number of arguments supplied to append is other than 1
or 2 then a message is printed indicating proper usage.

The general form of the case command is

case word in
pattern) command-list ;;
. . .

esac

The shell attempts to match word with each pattern, in the order in which the patterns appear. If a
match is found the associated command-list is executed and execution of the case is complete. Since *
is the pattern that matches any string it can be used for the default case.

A word of caution: no check is made to ensure that only one pattern matches the case argument. The
first match found defines the set of commands to be executed. In the example below the commands fol-
lowing the second * will never be executed.

- 7 -

case $# in

*) . . . ;;

*) . . . ;;
esac

Another example of the use of the case construction is to distinguish between different forms of an argu-
ment. The following example is a fragment of a cc command.

for i
do case $i in

−[ocs]) . . . ;;
−*) echo ´unknown flag $i´ ;;

*.c) /lib/c0 $i . . . ;;

*) echo ´unexpected argument $i´ ;;
esac

done

To allow the same commands to be associated with more than one pattern the case command provides
for alternative patterns separated by a | . For example,

case $i in
−x | −y) . . .

esac

is equivalent to

case $i in
−[xy]) . . .

esac

The usual quoting conventions apply so that

case $i in
\?) . . .

will match the character ? .

2.3 Here documents

The shell procedure tel in section 2.1 uses the file /usr/lib/telnos to supply the data for grep. An alter-
native is to include this data within the shell procedure as a here document, as in,

for i
do grep $i < <!

. . .
fred mh0123
bert mh0789
. . .

!
done

In this example the shell takes the lines between < <! and ! as the standard input for grep. The string !
is arbitrary, the document being terminated by a line that consists of the string following < < .

Parameters are substituted in the document before it is made available to grep as illustrated by the fol-
lowing procedure called edg .

- 8 -

ed $3 < <%
g/$1/s//$2/g
w
%

The call

edg string1 string2 file

is then equivalent to the command

ed file < <%
g/string1/s//string2/g
w
%

and changes all occurrences of string1 in file to string2 . Substitution can be prevented using \ to quote
the special character $ as in

ed $3 < <+
1,\$s/$1/$2/g
w
+

(This version of edg is equivalent to the first except that ed will print a ? if there are no occurrences of
the string $1 .) Substitution within a here document may be prevented entirely by quoting the terminat-
ing string, for example,

grep $i < <\#
. . .
#

The document is presented without modification to grep. If parameter substitution is not required in a
here document this latter form is more efficient.

2.4 Shell variables

The shell provides string-valued variables. Variable names begin with a letter and consist of letters,
digits and underscores. Variables may be given values by writing, for example,

user=fred box=m000 acct=mh0000

which assigns values to the variables user, box and acct. A variable may be set to the null string by
saying, for example,

null=

The value of a variable is substituted by preceding its name with $; for example,

echo $user

will echo fred.

Variables may be used interactively to provide abbreviations for frequently used strings. For example,

b=/usr/fred/bin
mv pgm $b

will move the file pgm from the current directory to the directory /usr/fred/bin . A more general nota-
tion is available for parameter (or variable) substitution, as in,

echo ${user}

which is equivalent to

- 9 -

echo $user

and is used when the parameter name is followed by a letter or digit. For example,

tmp=/tmp/ps
ps a >${tmp}a

will direct the output of ps to the file /tmp/psa, whereas,

ps a >$tmpa

would cause the value of the variable tmpa to be substituted.

Except for $? the following are set initially by the shell. $? is set after executing each command.

$? The exit status (return code) of the last command executed as a decimal string. Most
commands return a zero exit status if they complete successfully, otherwise a non-zero
exit status is returned. Testing the value of return codes is dealt with later under if and
while commands.

$# The number of positional parameters (in decimal). Used, for example, in the append
command to check the number of parameters.

$$ The process number of this shell (in decimal). Since process numbers are unique among
all existing processes, this string is frequently used to generate unique temporary file
names. For example,

ps a >/tmp/ps$$
. . .
rm /tmp/ps$$

$! The process number of the last process run in the background (in decimal).

$− The current shell flags, such as −x and −v .

Some variables have a special meaning to the shell and should be avoided for general use.

$MAIL When used interactively the shell looks at the file specified by this variable before it
issues a prompt. If the specified file has been modified since it was last looked at the
shell prints the message you have mail before prompting for the next command. This
variable is typically set in the file .profile, in the user’s login directory. For example,

MAIL=/usr/mail/fred

$HOME The default argument for the cd command. The current directory is used to resolve file
name references that do not begin with a / , and is changed using the cd command. For
example,

cd /usr/fred/bin

makes the current directory /usr/fred/bin .

cat wn

will print on the terminal the file wn in this directory. The command cd with no argu-
ment is equivalent to

cd $HOME

This variable is also typically set in the the user’s login profile.

$PATH A list of directories that contain commands (the search path). Each time a command is

- 10 -

executed by the shell a list of directories is searched for an executable file. If $PATH is
not set then the current directory, /bin, and /usr/bin are searched by default. Otherwise
$PATH consists of directory names separated by : . For example,

PATH=:/usr/fred/bin:/bin:/usr/bin

specifies that the current directory (the null string before the first :), /usr/fred/bin, /bin
and /usr/bin are to be searched in that order. In this way individual users can have their
own ‘private’ commands that are accessible independently of the current directory. If
the command name contains a / then this directory search is not used; a single attempt is
made to execute the command.

$PS1 The primary shell prompt string, by default, ‘$ ’.

$PS2 The shell prompt when further input is needed, by default, ‘> ’.

$IFS The set of characters used by blank interpretation (see section 3.4).

2.5 The test command

The test command, although not part of the shell, is intended for use by shell programs. For example,

test −f file

returns zero exit status if file exists and non-zero exit status otherwise. In general test evaluates a predi-
cate and returns the result as its exit status. Some of the more frequently used test arguments are given
here, see test (1) for a complete specification.

test s true if the argument s is not the null string
test −f file true if file exists
test −r file true if file is readable
test −w file true if file is writable
test −d file true if file is a directory

2.6 Control flow - while

The actions of the for loop and the case branch are determined by data available to the shell. A while
or until loop and an if then else branch are also provided whose actions are determined by the exit
status returned by commands. A while loop has the general form

while command-list1

do command-list2

done

The value tested by the while command is the exit status of the last simple command following while.
Each time round the loop command-list1 is executed; if a zero exit status is returned then command-list2

is executed; otherwise, the loop terminates. For example,

while test $1
do . . .

shift
done

is equivalent to

for i
do . . .
done

shift is a shell command that renames the positional parameters $2, $3, . . . as $1, $2, . . . and loses $1 .

Another kind of use for the while/until loop is to wait until some external event occurs and then run
some commands. In an until loop the termination condition is reversed. For example,

- 11 -

until test −f file
do sleep 300; done
commands

will loop until file exists. Each time round the loop it waits for 5 minutes before trying again. (Presum-
ably another process will eventually create the file.)

2.7 Control flow - if

Also available is a general conditional branch of the form,

if command-list
then command-list
else command-list
fi

that tests the value returned by the last simple command following if.

The if command may be used in conjunction with the test command to test for the existence of a file as
in

if test −f file
then process file
else do something else
fi

An example of the use of if, case and for constructions is given in section 2.10 .

A multiple test if command of the form

if . . .
then . . .
else if . . .

then . . .
else if . . .

. . .
fi

fi
fi

may be written using an extension of the if notation as,

if . . .
then . . .
elif . . .
then . . .
elif . . .
. . .
fi

The following example is the touch command which changes the ‘last modified’ time for a list of files.
The command may be used in conjunction with make (1) to force recompilation of a list of files.

- 12 -

flag=
for i
do case $i in

−c) flag=N ;;

*) if test −f $i
then ln $i junk$$; rm junk$$
elif test $flag
then echo file \´$i\´ does not exist
else >$i
fi

esac
done

The −c flag is used in this command to force subsequent files to be created if they do not already exist.
Otherwise, if the file does not exist, an error message is printed. The shell variable flag is set to some
non-null string if the −c argument is encountered. The commands

ln . . .; rm . . .

make a link to the file and then remove it thus causing the last modified date to be updated.

The sequence

if command1
then command2
fi

may be written

command1 && command2

Conversely,

command1 | | command2

executes command2 only if command1 fails. In each case the value returned is that of the last simple
command executed.

2.8 Command grouping

Commands may be grouped in two ways,

{ command-list ; }

and

(command-list)

In the first command-list is simply executed. The second form executes command-list as a separate pro-
cess. For example,

(cd x; rm junk)

executes rm junk in the directory x without changing the current directory of the invoking shell.

The commands

cd x; rm junk

have the same effect but leave the invoking shell in the directory x.

- 13 -

2.9 Debugging shell procedures

The shell provides two tracing mechanisms to help when debugging shell procedures. The first is
invoked within the procedure as

set −v

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to help iso-
late syntax errors. It may be invoked without modifying the procedure by saying

sh −v proc . . .

where proc is the name of the shell procedure. This flag may be used in conjunction with the −n flag
which prevents execution of subsequent commands. (Note that saying set −n at a terminal will render
the terminal useless until an end-of-file is typed.)

The command

set −x

will produce an execution trace. Following parameter substitution each command is printed as it is exe-
cuted. (Try these at the terminal to see what effect they have.) Both flags may be turned off by saying

set −

and the current setting of the shell flags is available as $− .

2.10 The man command

The following is the man command which is used to print sections of the UNIX manual. It is called,
for example, as

man sh
man −t ed
man 2 fork

In the first the manual section for sh is printed. Since no section is specified, section 1 is used. The
second example will typeset (−t option) the manual section for ed. The last prints the fork manual page
from section 2.

- 14 -

cd /usr/man

: ´colon is the comment command´
: ´default is nroff ($N), section 1 ($s)´
N=n s=1

for i
do case $i in

[1−9]*) s=$i ;;

−t) N=t ;;

−n) N=n ;;

−*) echo unknown flag \´$i\´ ;;

*) if test −f man$s/$i.$s
then ${N}roff man0/${N}aa man$s/$i.$s
else : ´look through all manual sections´

found=no
for j in 1 2 3 4 5 6 7 8 9
do if test −f man$j/$i.$j

then man $j $i
found=yes

fi
done
case $found in

no) echo ´$i: manual page not found´
esac

fi
esac

done

Figure 1. A version of the man command

- 15 -

3.0 Keyword parameters

Shell variables may be given values by assignment or when a shell procedure is invoked. An argument
to a shell procedure of the form name=value that precedes the command name causes value to be
assigned to name before execution of the procedure begins. The value of name in the invoking shell is
not affected. For example,

user=fred command

will execute command with user set to fred. The −k flag causes arguments of the form name=value to
be interpreted in this way anywhere in the argument list. Such names are sometimes called keyword
parameters. If any arguments remain they are available as positional parameters $1, $2,

The set command may also be used to set positional parameters from within a procedure. For example,

set − *
will set $1 to the first file name in the current directory, $2 to the next, and so on. Note that the first
argument, −, ensures correct treatment when the first file name begins with a − .

3.1 Parameter transmission

When a shell procedure is invoked both positional and keyword parameters may be supplied with the
call. Keyword parameters are also made available implicitly to a shell procedure by specifying in
advance that such parameters are to be exported. For example,

export user box

marks the variables user and box for export. When a shell procedure is invoked copies are made of all
exportable variables for use within the invoked procedure. Modification of such variables within the
procedure does not affect the values in the invoking shell. It is generally true of a shell procedure that it
may not modify the state of its caller without explicit request on the part of the caller. (Shared file
descriptors are an exception to this rule.)

Names whose value is intended to remain constant may be declared readonly . The form of this com-
mand is the same as that of the export command,

readonly name . . .

Subsequent attempts to set readonly variables are illegal.

3.2 Parameter substitution

If a shell parameter is not set then the null string is substituted for it. For example, if the variable d is
not set

echo $d

or

echo ${d}

will echo nothing. A default string may be given as in

echo ${d−.}

which will echo the value of the variable d if it is set and ‘.’ otherwise. The default string is evaluated
using the usual quoting conventions so that

echo ${d−´*´}

will echo * if the variable d is not set. Similarly

echo ${d−$1}

will echo the value of d if it is set and the value (if any) of $1 otherwise. A variable may be assigned a
default value using the notation

- 16 -

echo ${d=.}

which substitutes the same string as

echo ${d−.}

and if d were not previously set then it will be set to the string ‘.’ . (The notation ${. . .=. . .} is not
available for positional parameters.)

If there is no sensible default then the notation

echo ${d?message}

will echo the value of the variable d if it has one, otherwise message is printed by the shell and execu-
tion of the shell procedure is abandoned. If message is absent then a standard message is printed. A
shell procedure that requires some parameters to be set might start as follows.

: ${user?} ${acct?} ${bin?}
. . .

Colon (:) is a command that is built in to the shell and does nothing once its arguments have been
evaluated. If any of the variables user, acct or bin are not set then the shell will abandon execution of
the procedure.

3.3 Command substitution

The standard output from a command can be substituted in a similar way to parameters. The command
pwd prints on its standard output the name of the current directory. For example, if the current directory
is /usr/fred/bin then the command

d=`pwd`

is equivalent to

d=/usr/fred/bin

The entire string between grave accents (`. . .`) is taken as the command to be executed and is replaced
with the output from the command. The command is written using the usual quoting conventions except
that a ` must be escaped using a \ . For example,

ls `echo "$1"`

is equivalent to

ls $1

Command substitution occurs in all contexts where parameter substitution occurs (including here docu-
ments) and the treatment of the resulting text is the same in both cases. This mechanism allows string
processing commands to be used within shell procedures. An example of such a command is basename
which removes a specified suffix from a string. For example,

basename main.c .c

will print the string main . Its use is illustrated by the following fragment from a cc command.

case $A in
. . .

*.c) B=`basename $A .c`
. . .

esac

that sets B to the part of $A with the suffix .c stripped.

Here are some composite examples.

- 17 -

• for i in `ls −t`; do . . .
The variable i is set to the names of files in time order, most recent first.

• set `date`; echo $6 $2 $3, $4
will print, e.g., 1977 Nov 1, 23:59:59

3.4 Evaluation and quoting

The shell is a macro processor that provides parameter substitution, command substitution and file name
generation for the arguments to commands. This section discusses the order in which these evaluations
occur and the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in appendix A. Before a command is
executed the following substitutions occur.

• parameter substitution, e.g. $user

• command substitution, e.g. `pwd`

Only one evaluation occurs so that if, for example, the value of the variable X is the string
$y then

echo $X

will echo $y .

• blank interpretation

Following the above substitutions the resulting characters are broken into non-blank words
(blank interpretation). For this purpose ‘blanks’ are the characters of the string $IFS. By
default, this string consists of blank, tab and newline. The null string is not regarded as a
word unless it is quoted. For example,

echo ´´

will pass on the null string as the first argument to echo, whereas

echo $null

will call echo with no arguments if the variable null is not set or set to the null string.

• file name generation

Each word is then scanned for the file pattern characters *, ? and [. . .] and an alphabetical
list of file names is generated to replace the word. Each such file name is a separate argu-
ment.

The evaluations just described also occur in the list of words associated with a for loop. Only substitu-
tion occurs in the word used for a case branch.

As well as the quoting mechanisms described earlier using \ and ´. . .´ a third quoting mechanism is pro-
vided using double quotes. Within double quotes parameter and command substitution occurs but file
name generation and the interpretation of blanks does not. The following characters have a special
meaning within double quotes and may be quoted using \ .

$ parameter substitution
` command substitution
" ends the quoted string
\ quotes the special characters $ ` " \

For example,

echo "$x"

will pass the value of the variable x as a single argument to echo. Similarly,

echo "$*"

will pass the positional parameters as a single argument and is equivalent to

- 18 -

echo "$1 $2 . . ."

The notation $@ is the same as $* except when it is quoted.

echo "$@"

will pass the positional parameters, unevaluated, to echo and is equivalent to

echo "$1" "$2" . . .

The following table gives, for each quoting mechanism, the shell metacharacters that are evaluated.

metacharacter
\ $ * ` " ´

´ n n n n n t
` y n n t n n
" y y n y t n

t terminator
y interpreted
n not interpreted

Figure 2. Quoting mechanisms

In cases where more than one evaluation of a string is required the built-in command eval may be used.
For example, if the variable X has the value $y, and if y has the value pqr then

eval echo $X

will echo the string pqr .

In general the eval command evaluates its arguments (as do all commands) and treats the result as input
to the shell. The input is read and the resulting command(s) executed. For example,

wg=´eval who | grep´
$wg fred

is equivalent to

who | grep fred

In this example, eval is required since there is no interpretation of metacharacters, such as | , following
substitution.

3.5 Error handling

The treatment of errors detected by the shell depends on the type of error and on whether the shell is
being used interactively. An interactive shell is one whose input and output are connected to a terminal
(as determined by gtty (2)). A shell invoked with the −i flag is also interactive.

Execution of a command (see also 3.7) may fail for any of the following reasons.

• Input output redirection may fail. For example, if a file does not exist or cannot be created.

• The command itself does not exist or cannot be executed.

• The command terminates abnormally, for example, with a "bus error" or "memory fault". See
Figure 2 below for a complete list of UNIX signals.

• The command terminates normally but returns a non-zero exit status.

In all of these cases the shell will go on to execute the next command. Except for the last case an error
message will be printed by the shell. All remaining errors cause the shell to exit from a command pro-
cedure. An interactive shell will return to read another command from the terminal. Such errors include
the following.

- 19 -

• Syntax errors. e.g., if . . . then . . . done

• A signal such as interrupt. The shell waits for the current command, if any, to finish execution
and then either exits or returns to the terminal.

• Failure of any of the built-in commands such as cd.

The shell flag −e causes the shell to terminate if any error is detected.

1 hangup
2 interrupt
3* quit
4* illegal instruction
5* trace trap
6* IOT instruction
7* EMT instruction
8* floating point exception
9 kill (cannot be caught or ignored)
10* bus error
11* segmentation violation
12* bad argument to system call
13 write on a pipe with no one to read it
14 alarm clock
15 software termination (from kill (1))

Figure 3. UNIX signals

Those signals marked with an asterisk produce a core dump if not caught. However, the shell itself
ignores quit which is the only external signal that can cause a dump. The signals in this list of potential
interest to shell programs are 1, 2, 3, 14 and 15.

3.6 Fault handling

Shell procedures normally terminate when an interrupt is received from the terminal. The trap com-
mand is used if some cleaning up is required, such as removing temporary files. For example,

trap ´rm /tmp/ps$$; exit´ 2

sets a trap for signal 2 (terminal interrupt), and if this signal is received will execute the commands

rm /tmp/ps$$; exit

exit is another built-in command that terminates execution of a shell procedure. The exit is required;
otherwise, after the trap has been taken, the shell will resume executing the procedure at the place where
it was interrupted.

UNIX signals can be handled in one of three ways. They can be ignored, in which case the signal is
never sent to the process. They can be caught, in which case the process must decide what action to
take when the signal is received. Lastly, they can be left to cause termination of the process without it
having to take any further action. If a signal is being ignored on entry to the shell procedure, for exam-
ple, by invoking it in the background (see 3.7) then trap commands (and the signal) are ignored.

The use of trap is illustrated by this modified version of the touch command (Figure 4). The cleanup
action is to remove the file junk$$.

- 20 -

flag=
trap ´rm −f junk$$; exit´ 1 2 3 15
for i
do case $i in

−c) flag=N ;;

*) if test −f $i
then ln $i junk$$; rm junk$$
elif test $flag
then echo file \´$i\´ does not exist
else >$i
fi

esac
done

Figure 4. The touch command

The trap command appears before the creation of the temporary file; otherwise it would be possible for
the process to die without removing the file.

Since there is no signal 0 in UNIX it is used by the shell to indicate the commands to be executed on
exit from the shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argument to trap.
The following fragment is taken from the nohup command.

trap ´´ 1 2 3 15

which causes hangup, interrupt, quit and kill to be ignored both by the procedure and by invoked com-
mands.

Traps may be reset by saying

trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of the current values of traps
may be obtained by writing

trap

The procedure scan (Figure 5) is an example of the use of trap where there is no exit in the trap com-
mand. scan takes each directory in the current directory, prompts with its name, and then executes com-
mands typed at the terminal until an end of file or an interrupt is received. Interrupts are ignored while
executing the requested commands but cause termination when scan is waiting for input.

d=`pwd`
for i in *
do if test −d $d/$i

then cd $d/$i
while echo "$i:"

trap exit 2
read x

do trap : 2; eval $x; done
fi

done

Figure 5. The scan command

read x is a built-in command that reads one line from the standard input and places the result in the

- 21 -

variable x . It returns a non-zero exit status if either an end-of-file is read or an interrupt is received.

3.7 Command execution

To run a command (other than a built-in) the shell first creates a new process using the system call fork.
The execution environment for the command includes input, output and the states of signals, and is esta-
blished in the child process before the command is executed. The built-in command exec is used in the
rare cases when no fork is required and simply replaces the shell with a new command. For example, a
simple version of the nohup command looks like

trap ´´ 1 2 3 15
exec $*

The trap turns off the signals specified so that they are ignored by subsequently created commands and
exec replaces the shell by the command specified.

Most forms of input output redirection have already been described. In the following word is only sub-
ject to parameter and command substitution. No file name generation or blank interpretation takes place
so that, for example,

echo . . . >*.c

will write its output into a file whose name is *.c . Input output specifications are evaluated left to right
as they appear in the command.

> word The standard output (file descriptor 1) is sent to the file word which is created if it does
not already exist.

> > word The standard output is sent to file word. If the file exists then output is appended (by
seeking to the end); otherwise the file is created.

< word The standard input (file descriptor 0) is taken from the file word.

< < word The standard input is taken from the lines of shell input that follow up to but not includ-
ing a line consisting only of word. If word is quoted then no interpretation of the docu-
ment occurs. If word is not quoted then parameter and command substitution occur and \
is used to quote the characters \ $ ` and the first character of word. In the latter case
\newline is ignored (c.f. quoted strings).

>& digit The file descriptor digit is duplicated using the system call dup (2) and the result is used
as the standard output.

<& digit The standard input is duplicated from file descriptor digit.

<&− The standard input is closed.

>&− The standard output is closed.

Any of the above may be preceded by a digit in which case the file descriptor created is that specified
by the digit instead of the default 0 or 1. For example,

. . . 2>file

runs a command with message output (file descriptor 2) directed to file.

. . . 2>&1

runs a command with its standard output and message output merged. (Strictly speaking file descriptor
2 is created by duplicating file descriptor 1 but the effect is usually to merge the two streams.)

The environment for a command run in the background such as

list *.c | lpr &

is modified in two ways. Firstly, the default standard input for such a command is the empty file
/dev/null . This prevents two processes (the shell and the command), which are running in parallel,
from trying to read the same input. Chaos would ensue if this were not the case. For example,

- 22 -

ed file &

would allow both the editor and the shell to read from the same input at the same time.

The other modification to the environment of a background command is to turn off the QUIT and
INTERRUPT signals so that they are ignored by the command. This allows these signals to be used at
the terminal without causing background commands to terminate. For this reason the UNIX convention
for a signal is that if it is set to 1 (ignored) then it is never changed even for a short time. Note that the
shell command trap has no effect for an ignored signal.

3.8 Invoking the shell

The following flags are interpreted by the shell when it is invoked. If the first character of argument
zero is a minus, then commands are read from the file .profile .

−c string
If the −c flag is present then commands are read from string .

−s If the −s flag is present or if no arguments remain then commands are read from the standard
input. Shell output is written to file descriptor 2.

−i If the −i flag is present or if the shell input and output are attached to a terminal (as told by gtty)
then this shell is interactive. In this case TERMINATE is ignored (so that kill 0 does not kill an
interactive shell) and INTERRUPT is caught and ignored (so that wait is interruptable). In all
cases QUIT is ignored by the shell.

Acknowledgements

The design of the shell is based in part on the original UNIX shell3 and the PWB/UNIX shell,4 some
features having been taken from both. Similarities also exist with the command interpreters of the Cam-
bridge Multiple Access System5 and of CTSS.6

I would like to thank Dennis Ritchie and John Mashey for many discussions during the design of the
shell. I am also grateful to the members of the Computing Science Research Center and to Joe Maran-
zano for their comments on drafts of this document.

References

1. B. W. Kernighan, UNIX for Beginners, 1978.

2. K. Thompson and D. M. Ritchie, UNIX Programmer’s Manual, Bell Laboratories (1978). Seventh
Edition.

3. K. Thompson, ‘‘The UNIX Command Language,’’ pp. 375-384 in Structured Programming—
Infotech State of the Art Report, Infotech International Ltd., Nicholson House, Maidenhead,
Berkshire, England (March 1975).

4. J. R. Mashey, PWB/UNIX Shell Tutorial, September 30, 1977.

5. D. F. Hartley (Ed.), The Cambridge Multiple Access System – Users Reference Manual, Univer-
sity Mathematical Laboratory, Cambridge, England (1968).

6. P. A. Crisman (Ed.), The Compatible Time-Sharing System, M.I.T. Press, Cambridge, Mass.
(1965).

- 23 -

Appendix A - Grammar

item: word
input-output
name = value

simple-command: item
simple-command item

command: simple-command
(command-list)
{ command-list }
for name do command-list done
for name in word . . . do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part . . . esac
if command-list then command-list else-part fi

pipeline: command
pipeline | command

andor: pipeline
andor && pipeline
andor | | pipeline

command-list: andor
command-list ;
command-list &
command-list ; andor
command-list & andor

input-output: > file
< file
> > word
< < word

file: word
& digit
& −

case-part: pattern) command-list ;;

pattern: word
pattern | word

else-part: elif command-list then command-list else-part
else command-list
empty

empty:

word: a sequence of non-blank characters

name: a sequence of letters, digits or underscores starting with a letter

digit: 0 1 2 3 4 5 6 7 8 9

- 24 -

Appendix B - Meta-characters and Reserved Words

a) syntactic

| pipe symbol

&& ‘andf’ symbol

| | ‘orf’ symbol

; command separator

;; case delimiter

& background commands

() command grouping

< input redirection

< < input from a here document

> output creation

> > output append

b) patterns

* match any character(s) including none

? match any single character

[...] match any of the enclosed characters

c) substitution

${...} substitute shell variable

`...` substitute command output

d) quoting

\ quote the next character

´...´ quote the enclosed characters except for ´

"..." quote the enclosed characters except for $ ` \ "

e) reserved words

if then else elif fi
case in esac
for while until do done
{ }

LEARN — Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan

Michael E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the second version of the learn program for interpreting
CAI scripts on the UNIX† operating system, and a set of scripts that provide a compu-
terized introduction to the system.

Six current scripts cover basic commands and file handling, the editor, additional
file handling commands, the eqn program for mathematical typing, the ‘‘– ms’’ package
of formatting macros, and an introduction to the C programming language. These
scripts now include a total of about 530 lessons.

Many users from a wide variety of backgrounds have used learn to acquire basic
UNIX skills. Most usage involves the first two scripts, an introduction to UNIX files
and commands, and the UNIX editor.

The second version of learn is about four times faster than the previous one in
CPU utilization, and much faster in perceived time because of better overlap of com-
puting and printing. It also requires less file space than the first version. Many of the
lessons have been revised; new material has been added to reflect changes and
enhancements in UNIX itself. Script-writing is also easier because of revisions to the
script language.

January 30, 1979

_ ______________
†UNIX is a Trademark of Bell Laboratories.

LEARN — Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan

Michael E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

1. Educational Assumptions and Design.

First, the way to teach people how to do something is to have them do it. Scripts should not con-
tain long pieces of explanation; they should instead frequently ask the student to do some task. So
teaching is always by example: the typical script fragment shows a small example of some technique
and then asks the user to either repeat that example or produce a variation on it. All are intended to be
easy enough that most students will get most questions right, reinforcing the desired behavior.

Most lessons fall into one of three types. The simplest presents a lesson and asks for a yes or no
answer to a question. The student is given a chance to experiment before replying. The script checks
for the correct reply. Problems of this form are sparingly used.

The second type asks for a word or number as an answer. For example a lesson on files might
say

How many files are there in the current directory? Type ‘‘answer N’’, where N is the number of
files.

The student is expected to respond (perhaps after experimenting) with

answer 17

or whatever. Surprisingly often, however, the idea of a substitutable argument (i.e., replacing N by 17)
is difficult for non-programmer students, so the first few such lessons need real care.

The third type of lesson is open-ended — a task is set for the student, appropriate parts of the
input or output are monitored, and the student types ready when the task is done. Figure 1 shows a
sample dialog that illustrates the last of these, using two lessons about the cat (concatenate, i.e., print)
command taken from early in the script that teaches file handling. Most learn lessons are of this form.

After each correct response the computer congratulates the student and indicates the lesson number
that has just been completed, permitting the student to restart the script after that lesson. If the answer
is wrong, the student is offered a chance to repeat the lesson. The ‘‘speed’’ rating of the student
(explained in section 5) is given after the lesson number when the lesson is completed successfully; it is
printed only for the aid of script authors checking out possible errors in the lessons.

It is assumed that there is no foolproof way to determine if the student truly ‘‘understands’’ what
he or she is doing; accordingly, the current learn scripts only measure performance, not comprehension.
If the student can perform a given task, that is deemed to be ‘‘learning.’’1

The main point of using the computer is that what the student does is checked for correctness
immediately. Unlike many CAI scripts, however, these scripts provide few facilities for dealing with
wrong answers. In practice, if most of the answers are not right the script is a failure; the universal
solution to student error is to provide a new, easier script. Anticipating possible wrong answers is an
endless job, and it is really easier as well as better to provide a simpler script.

Along with this goes the assumption that anything can be taught to anybody if it can be broken
into sufficiently small pieces. Anything not absorbed in a single chunk is just subdivided.

- 2 -

_ __
Figure 1: Sample dialog from basic files script

(Student responses in italics; ‘$’ is the prompt)

A file can be printed on your terminal
by using the "cat" command. Just say
"cat file" where "file" is the file name.
For example, there is a file named
"food" in this directory. List it
by saying "cat food"; then type "ready".
$ cat food

this is the file
named food.

$ ready

Good. Lesson 3.3a (1)

Of course, you can print any file with "cat".
In particular, it is common to first use
"ls" to find the name of a file and then "cat"
to print it. Note the difference between
"ls", which tells you the name of the file,
and "cat", which tells you the contents.
One file in the current directory is named for
a President. Print the file, then type "ready".
$ cat President
cat: can’t open President
$ ready

Sorry, that’s not right. Do you want to try again? yes
Try the problem again.
$ ls
.ocopy
X1
roosevelt
$ cat roosevelt

this file is named roosevelt
and contains three lines of
text.

$ ready

Good. Lesson 3.3b (0)

The "cat" command can also print several files
at once. In fact, it is named "cat" as an abbreviation
for "concatenate"...._ __ 
















































































































To avoid boring the faster students, however, an effort is made in the files and editor scripts to
provide three tracks of different difficulty. The fastest sequence of lessons is aimed at roughly the bulk
and speed of a typical tutorial manual and should be adequate for review and for well-prepared students.
The next track is intended for most users and is roughly twice as long. Typically, for example, the fast
track might present an idea and ask for a variation on the example shown; the normal track will first ask
the student to repeat the example that was shown before attempting a variation. The third and slowest

- 3 -

track, which is often three or four times the length of the fast track, is intended to be adequate for any-
one. (The lessons of Figure 1 are from the third track.) The multiple tracks also mean that a student
repeating a course is unlikely to hit the same series of lessons; this makes it profitable for a shaky user
to back up and try again, and many students have done so.

The tracks are not completely distinct, however. Depending on the number of correct answers the
student has given for the last few lessons, the program may switch tracks. The driver is actually capable
of following an arbitrary directed graph of lesson sequences, as discussed in section 5. Some more
structured arrangement, however, is used in all current scripts to aid the script writer in organizing the
material into lessons. It is sufficiently difficult to write lessons that the three-track theory is not fol-
lowed very closely except in the files and editor scripts. Accordingly, in some cases, the fast track is
produced merely by skipping lessons from the slower track. In others, there is essentially only one
track.

The main reason for using the learn program rather than simply writing the same material as a
workbook is not the selection of tracks, but actual hands-on experience. Learning by doing is much
more effective than pencil and paper exercises.

Learn also provides a mechanical check on performance. The first version in fact would not let
the student proceed unless it received correct answers to the questions it set and it would not tell a stu-
dent the right answer. This somewhat Draconian approach has been moderated in version 2. Lessons
are sometimes badly worded or even just plain wrong; in such cases, the student has no recourse. But if
a student is simply unable to complete one lesson, that should not prevent access to the rest. Accord-
ingly, the current version of learn allows the student to skip a lesson that he cannot pass; a ‘‘no’’
answer to the ‘‘Do you want to try again?’’ question in Figure 1 will pass to the next lesson. It is still
true that learn will not tell the student the right answer.

Of course, there are valid objections to the assumptions above. In particular, some students may
object to not understanding what they are doing; and the procedure of smashing everything into small
pieces may provoke the retort ‘‘you can’t cross a ditch in two jumps.’’ Since writing CAI scripts is
considerably more tedious than ordinary manuals, however, it is safe to assume that there will always be
alternatives to the scripts as a way of learning. In fact, for a reference manual of 3 or 4 pages it would
not be surprising to have a tutorial manual of 20 pages and a (multi-track) script of 100 pages. Thus the
reference manual will exist long before the scripts.

2. Scripts.

As mentioned above, the present scripts try at most to follow a three-track theory. Thus little of
the potential complexity of the possible directed graph is employed, since care must be taken in lesson
construction to see that every necessary fact is presented in every possible path through the units. In
addition, it is desirable that every unit have alternate successors to deal with student errors.

In most existing courses, the first few lessons are devoted to checking prerequisites. For example,
before the student is allowed to proceed through the editor script the script verifies that the student
understands files and is able to type. It is felt that the sooner lack of student preparation is detected, the
easier it will be on the student. Anyone proceeding through the scripts should be getting mostly correct
answers; otherwise, the system will be unsatisfactory both because the wrong habits are being learned
and because the scripts make little effort to deal with wrong answers. Unprepared students should not
be encouraged to continue with scripts.

There are some preliminary items which the student must know before any scripts can be tried. In
particular, the student must know how to connect to a UNIX† system, set the terminal properly, log in,
and execute simple commands (e.g., learn itself). In addition, the character erase and line kill conven-
tions (# and @) should be known. It is hard to see how this much could be taught by computer-aided
instruction, since a student who does not know these basic skills will not be able to run the learning pro-
gram. A brief description on paper is provided (see Appendix A), although assistance will be needed for
the first few minutes. This assistance, however, need not be highly skilled.

†UNIX is a Trademark of Bell Laboratories.

- 4 -

The first script in the current set deals with files. It assumes the basic knowledge above and
teaches the student about the ls , cat , mv , rm , cp and diff commands. It also deals with the abbrevia-
tion characters *, ?, and [] in file names. It does not cover pipes or I/O redirection, nor does it present
the many options on the ls command.

This script contains 31 lessons in the fast track; two are intended as prerequisite checks, seven are
review exercises. There are a total of 75 lessons in all three tracks, and the instructional passages typed
at the student to begin each lesson total 4,476 words. The average lesson thus begins with a 60-word
message. In general, the fast track lessons have somewhat longer introductions, and the slow tracks
somewhat shorter ones. The longest message is 144 words and the shortest 14.

The second script trains students in the use of the UNIX context editor ed , a sophisticated editor
using regular expressions for searching.2 All editor features except encryption, mark names and ‘;’ in
addressing are covered. The fast track contains 2 prerequisite checks, 93 lessons, and a review lesson.
It is supplemented by 146 additional lessons in other tracks.

A comparison of sizes may be of interest. The ed description in the reference manual is 2,572
words long. The ed tutorial3 is 6,138 words long. The fast track through the ed script is 7,407 words of
explanatory messages, and the total ed script, 242 lessons, has 15,615 words. The average ed lesson is
thus also about 60 words; the largest is 171 words and the smallest 10. The original ed script represents
about three man-weeks of effort.

The advanced file handling script deals with ls options, I/O diversion, pipes, and supporting pro-
grams like pr , wc , tail , spell and grep . (The basic file handling script is a prerequisite.) It is not as
refined as the first two scripts; this is reflected at least partly in the fact that it provides much less of a
full three-track sequence than they do. On the other hand, since it is perceived as ‘‘advanced,’’ it is
hoped that the student will have somewhat more sophistication and be better able to cope with it at a
reasonably high level of performance.

A fourth script covers the eqn language for typing mathematics. This script must be run on a ter-
minal capable of printing mathematics, for instance the DASI 300 and similar Diablo-based terminals, or
the nearly extinct Model 37 teletype. Again, this script is relatively short of tracks: of 76 lessons, only
17 are in the second track and 2 in the third track. Most of these provide additional practice for stu-
dents who are having trouble in the first track.

The – ms script for formatting macros is a short one-track only script. The macro package it
describes is no longer the standard, so this script will undoubtedly be superseded in the future. Further-
more, the linear style of a single learn script is somewhat inappropriate for the macros, since the macro
package is composed of many independent features, and few users need all of them. It would be better
to have a selection of short lesson sequences dealing with the features independently.

The script on C is in a state of transition. It was originally designed to follow a tutorial on C, but
that document has since become obsolete. The current script has been partially converted to follow the
order of presentation in The C Programming Language,4 but this job is not complete. The C script was
never intended to teach C; rather it is supposed to be a series of exercises for which the computer pro-
vides checking and (upon success) a suggested solution.

This combination of scripts covers much of the material which any UNIX user will need to know to
make effective use of the system. With enlargement of the advanced files course to include more on the
command interpreter, there will be a relatively complete introduction to UNIX available via learn.
Although we make no pretense that learn will replace other instructional materials, it should provide a
useful supplement to existing tutorials and reference manuals.

3. Experience with Students.

Learn has been installed on many different UNIX systems. Most of the usage is on the first two
scripts, so these are more thoroughly debugged and polished. As a (random) sample of user experience,
the learn program has been used at Bell Labs at Indian Hill for 10,500 lessons in a four month period.
About 3600 of these are in the files script, 4100 in the editor, and 1400 in advanced files. The passing
rate is about 80%, that is, about 4 lessons are passed for every one failed. There have been 86 distinct
users of the files script, and 58 of the editor. On our system at Murray Hill, there have been nearly

- 5 -

2000 lessons over two weeks that include Christmas and New Year. Users have ranged in age from six
up.

It is difficult to characterize typical sessions with the scripts; many instances exist of someone
doing one or two lessons and then logging out, as do instances of someone pausing in a script for
twenty minutes or more. In the earlier version of learn , the average session in the files course took 32
minutes and covered 23 lessons. The distribution is quite broad and skewed, however; the longest ses-
sion was 130 minutes and there were five sessions shorter than five minutes. The average lesson took
about 80 seconds. These numbers are roughly typical for non-programmers; a UNIX expert can do the
scripts at approximately 30 seconds per lesson, most of which is the system printing.

At present working through a section of the middle of the files script took about 1.4 seconds of
processor time per lesson, and a system expert typing quickly took 15 seconds of real time per lesson.
A novice would probably take at least a minute. Thus a UNIX system could support ten students work-
ing simultaneously with some spare capacity.

4. The Script Interpreter.

The learn program itself merely interprets scripts. It provides facilities for the script writer to cap-
ture student responses and their effects, and simplifies the job of passing control to and recovering con-
trol from the student. This section describes the operation and usage of the driver program, and indi-
cates what is required to produce a new script. Readers only interested in the existing scripts may skip
this section.

The file structure used by learn is shown in Figure 2. There is one parent directory (named lib)
containing the script data. Within this directory are subdirectories, one for each subject in which a
course is available, one for logging (named log), and one in which user sub-directories are created
(named play). The subject directory contains master copies of all lessons, plus any supporting material
for that subject. In a given subdirectory, each lesson is a single text file. Lessons are usually named
systematically; the file that contains lesson n is called Ln .

_ __
Figure 2: Directory structure for learn

lib

play
student1

files for student1...
student2

files for student2...

files
L0.1a lessons for files course
L0.1b
...

editor
...

(other courses)

log_ __ 













































When learn is executed, it makes a private directory for the user to work in, within the learn por-
tion of the file system. A fresh copy of all the files used in each lesson (mostly data for the student to
operate upon) is made each time a student starts a lesson, so the script writer may assume that every-
thing is reinitialized each time a lesson is entered. The student directory is deleted after each session;
any permanent records must be kept elsewhere.

- 6 -

The script writer must provide certain basic items in each lesson:

(1) the text of the lesson;

(2) the set-up commands to be executed before the user gets control;

(3) the data, if any, which the user is supposed to edit, transform, or otherwise process;

(4) the evaluating commands to be executed after the user has finished the lesson, to decide whether
the answer is right; and

(5) a list of possible successor lessons.

Learn tries to minimize the work of bookkeeping and installation, so that most of the effort involved in
script production is in planning lessons, writing tutorial paragraphs, and coding tests of student perfor-
mance.

The basic sequence of events is as follows. First, learn creates the working directory. Then, for
each lesson, learn reads the script for the lesson and processes it a line at a time. The lines in the script
are: (1) commands to the script interpreter to print something, to create a files, to test something, etc.;
(2) text to be printed or put in a file; (3) other lines, which are sent to the shell to be executed. One line
in each lesson turns control over to the user; the user can run any UNIX commands. The user mode ter-
minates when the user types yes , no , ready , or answer . At this point, the user’s work is tested; if the
lesson is passed, a new lesson is selected, and if not the old one is repeated.

Let us illustrate this with the script for the second lesson of Figure 1; this is shown in Figure 3.

Figure 3: Sample Lesson

#print
Of course, you can print any file with "cat".
In particular, it is common to first use
"ls" to find the name of a file and then "cat"
to print it. Note the difference between
"ls", which tells you the name of the files,
and "cat", which tells you the contents.
One file in the current directory is named for
a President. Print the file, then type "ready".
#create roosevelt

this file is named roosevelt
and contains three lines of
text.

#copyout
#user
#uncopyout
tail – 3 .ocopy >X1
#cmp X1 roosevelt
#log
#next
3.2b 2_______________________________________ 


























































Lines which begin with # are commands to the learn script interpreter. For example,

#print

causes printing of any text that follows, up to the next line that begins with a sharp.

#print file

prints the contents of file ; it is the same as cat file but has less overhead. Both forms of #print have the
added property that if a lesson is failed, the #print will not be executed the second time through; this

- 7 -

avoids annoying the student by repeating the preamble to a lesson.

#create filename

creates a file of the specified name, and copies any subsequent text up to a # to the file. This is used for
creating and initializing working files and reference data for the lessons.

#user

gives control to the student; each line he or she types is passed to the shell for execution. The #user
mode is terminated when the student types one of yes , no , ready or answer . At that time, the driver
resumes interpretation of the script.

#copyin
#uncopyin

Anything the student types between these commands is copied onto a file called .copy. This lets the
script writer interrogate the student’s responses upon regaining control.

#copyout
#uncopyout

Between these commands, any material typed at the student by any program is copied to the file .ocopy.
This lets the script writer interrogate the effect of what the student typed, which true believers in the
performance theory of learning usually prefer to the student’s actual input.

#pipe
#unpipe

Normally the student input and the script commands are fed to the UNIX command interpreter (the
‘‘shell’’) one line at a time. This won’t do if, for example, a sequence of editor commands is provided,
since the input to the editor must be handed to the editor, not to the shell. Accordingly, the material
between #pipe and #unpipe commands is fed continuously through a pipe so that such sequences work.
If copyout is also desired the copyout brackets must include the pipe brackets.

There are several commands for setting status after the student has attempted the lesson.

#cmp file1 file2

is an in-line implementation of cmp , which compares two files for identity.

#match stuff

The last line of the student’s input is compared to stuff , and the success or fail status is set according to
it. Extraneous things like the word answer are stripped before the comparison is made. There may be
several #match lines; this provides a convenient mechanism for handling multiple ‘‘right’’ answers.
Any text up to a # on subsequent lines after a successful #match is printed; this is illustrated in Figure
4, another sample lesson.

#bad stuff

This is similar to #match , except that it corresponds to specific failure answers; this can be used to pro-
duce hints for particular wrong answers that have been anticipated by the script writer.

#succeed
#fail

print a message upon success or failure (as determined by some previous mechanism).

When the student types one of the ‘‘commands’’ yes , no , ready , or answer , the driver terminates
the #user command, and evaluation of the student’s work can begin. This can be done either by the
built-in commands above, such as #match and #cmp , or by status returned by normal UNIX commands,
typically grep and test . The last command should return status true (0) if the task was done success-
fully and false (non-zero) otherwise; this status return tells the driver whether or not the student has suc-
cessfully passed the lesson.

Performance can be logged:

#log file

- 8 -

_ __
Figure 4: Another Sample Lesson

#print
What command will move the current line
to the end of the file? Type
"answer COMMAND", where COMMAND is the command.
#copyin
#user
#uncopyin
#match m$
#match .m$
"m$" is easier.
#log
#next
63.1d 10_ __ 






































writes the date, lesson, user name and speed rating, and a success/failure indication on file. The com-
mand

#log

by itself writes the logging information in the logging directory within the learn hierarchy, and is the
normal form.

#next

is followed by a few lines, each with a successor lesson name and an optional speed rating on it. A typ-
ical set might read

25.1a 10
25.2a 5
25.3a 2

indicating that unit 25.1a is a suitable follow-on lesson for students with a speed rating of 10 units,
25.2a for student with speed near 5, and 25.3a for speed near 2. Speed ratings are maintained for each
session with a student; the rating is increased by one each tiee the student gets a lesson right and
decreased by four each time the student gets a lesson wrong. Thus the driver tries to maintain a devel
such that the users get 80% right answers. The maximum rating is limited to 10 afd the minimum to 0.
The initial rating is zero unless the studeft specifies a differeft rating when starting a session.

If the student passes a lesson, a new lesson is sedected and the process repeats. If the student
fails, a false status is returned and the program reverts to the previous lesson and tries another alterna-
tive. If it can not find another alternative, it skips forward a lesson. bye , bye, which causes a graceful
exit from the learn system. Hanging up is the usual novice’s way out.

The lessons may form an arbitrary directed graph, although the present program imposes a limita-
tion on cycles in that it will not present a lesson twice in the same session. If the student is unable to
answer one of the exercises correctly, the driver searches for a previous lesson with a set of alternatives
as successors (following the #next line). From the previous lesson with alternatives one route was taken
earlier; the program simply tries a different one.

It is perfectly possible to write sophisticated scripts that evaluate the student’s speed of response,
or try to estimate the elegance of the answer, or provide detailed analysis of wrong answers. Lesson
writing is so tedious already, however, that most of these abilities are likely to go unused.

The driver program depends heavily on features of UNIX that are not available on many other
operating systems. These include the ease of manipulating files and directories, file redirection, the abil-
ity to use the command interpreter as just another program (even in a pipeline), command status testing
and branching, the ability to catch signals like interrupts, and of course the pipeline mechanism itself.

- 9 -

Although some parts of learn might be transferable to other systems, some generality will probably be
lost.

A bit of history: The first version of learn had fewer built-in words in the driver program, and
made more use of the facilities of UNIX. For example, file comparison was done by creating a cmp pro-
cess, rather than comparing the two files within learn . Lessons were not stored as text files, but as
archives. There was no concept of the in-line document; even #print had to be followed by a file name.
Thus the initialization for each lesson was to extract the archive into the working directory (typically 4-8
files), then #print the lesson text.

The combination of such things made learn slower. The new version is about 4 or 5 times faster.
Furthermore, it appears even faster to the user because in a typical lesson, the printing of the message
comes first, and file setup with #create can be overlapped with the printng, so that when the program
finishes printing, it is really ready for the user to type at it.

It is also a great advantage to the script maintainer that lessons are now just ordinary text files.
They can be edited without any difficulty, and UNIX text manipulation tools can be applied to them. The
result has been that there is much less resistance to going in and fixing substandard lessons.

5. Conclusions

The following observations can be made about secretaries, typists, and other non-programmers
who have used learn :

(a) A novice must have assistance with the mechanics of communicating with the computer to get
through to the first lesson or two; once the first few lessons are passed people can proceed on their
own.

(b) The terminology used in the first few lessons is obscure to those inexperienced with computers. It
would help if there were a low level reference card for UNIX to supplement the existing program-
mer oriented bulky manual and bulky reference card.

(c) The concept of ‘‘substitutable argument’’ is hard to grasp, and requires help.

(d) They enjoy the system for the most part. Motivation matters a great deal, however.

It takes an hour or two for a novice to get through the script on file handling. The total time for a rea-
sonably intelligent and motivated novice to proceed from ignorance to a reasonable ability to create new
files and manipulate old ones seems to be a few days, with perhaps half of each day spent on the
machine.

The normal way of proceeding has been to have students in the same room with someone who
knows UNIX and the scripts. Thus the student is not brought to a halt by difficult questions. The burden
on the counselor, however, is much lower than that on a teacher of a course. Ideally, the students
should be encouraged to proceed with instruction immediately prior to their actual use of the computer.
They should exercise the scripts on the same computer and the same kind of terminal that they will later
use for their real work, and their first few jobs for the computer should be relatively easy ones. Also,
both training and initial work should take place on days when the UNIX hardware and software are work-
ing reliably. Rarely is all of this possible, but the closer one comes the better the result. For example,
if it is known that the hardware is shaky one day, it is better to attempt to reschedule training for
another one. Students are very frustrated by machine downtime; when nothing is happening, it takes
some sophistication and experience to distinguish an infinite loop, a slow but functioning program, a
program waiting for the user, and a broken machine.*

One disadvantage of training with learn is that students come to depend completely on the CAI
system, and do not try to read manuals or use other learning aids. This is unfortunate, not only because
of the increased demands for completeness and accuracy of the scripts, but because the scripts do not
cover all of the UNIX system. New users should have manuals (appropriate for their level) and read
them; the scripts ought to be altered to recommend suitable documents and urge students to read them.

* We have even known an expert programmer to decide the computer was broken when he had simply left his terminal
in local mode. Novices have great difficulties with such problems.

- 10 -

There are several other difficulties which are clearly evident. From the student’s viewpoint, the
most serious is that lessons still crop up which simply can’t be passed. Sometimes this is due to poor
explanations, but just as often it is some error in the lesson itself — a botched setup, a missing file, an
invalid test for correctness, or some system facility that doesn’t work on the local system in the same
way it did on the development system. It takes knowledge and a certain healthy arrogance on the part
of the user to recognize that the fault is not his or hers, but the script writer’s. Permitting the student to
get on with the next lesson regardless does alleviate this somewhat, and the logging facilities make it
easy to watch for lessons that no one can pass, but it is still a problem.

The biggest problem with the previous learn was speed (or lack thereof) — it was often excruciat-
ingly slow and made a significant drain on the system. The current version so far does not seem to have
that difficulty, although some scripts, notably eqn , are intrinsically slow. eqn , for example, must do a
lot of work even to print its introductions, let alone check the student responses, but delay is perceptible
in all scripts from time to time.

Another potential problem is that it is possible to break learn inadvertently, by pushing interrupt at
the wrong time, or by removing critical files, or any number of similar slips. The defenses against such
problems have steadily been improved, to the point where most students should not notice difficulties.
Of course, it will always be possible to break learn maliciously, but this is not likely to be a problem.

One area is more fundamental — some UNIX commands are sufficiently global in their effect that
learn currently does not allow them to be executed at all. The most obvious is cd , which changes to
another directory. The prospect of a student who is learning about directories inadvertently moving to
some random directory and removing files has deterred us from even writing lessons on cd , but ulti-
mately lessons on such topics probably should be added.

6. Acknowledgments

We are grateful to all those who have tried learn, for we have benefited greatly from their sugges-
tions and criticisms. In particular, M. E. Bittrich, J. L. Blue, S. I. Feldman, P. A. Fox, and M. J. McAl-
pin have provided substantial feedback. Conversations with E. Z. Rothkopf also provided many of the
ideas in the system. We are also indebted to Don Jackowski for serving as a guinea pig for the second
version, and to Tom Plum for his efforts to improve the C script.

References

1. B. F. Skinner, ‘‘Why We Need Teaching Machines,’’ Harvard Educational Review 31, pp.377-398
(1961).

2. K. Thompson and D. M. Ritchie, UNIX Programmer’s Manual, Bell Laboratories (May 1975). See
section ed (I).

3. B. W. Kernighan, A Tutorial Introduction to the Unix Editor ed, 1974.

4. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice Hall (1978).

Typing Documents on the UNIX System:
Using the – ms Macros with Troff and Nroff

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This document describes a set of easy-to-use macros for preparing documents on
the UNIX system. Documents may be produced on either the phototypesetter or a on a
computer terminal, without changing the input.

The macros provide facilities for paragraphs, sections (optionally with automatic
numbering), page titles, footnotes, equations, tables, two-column format, and cover
pages for papers.

This memo includes, as an appendix, the text of the ‘‘Guide to Preparing Docu-
ments with – ms’’ which contains additional examples of features of – ms.

This manual is a revision of, and replaces, ‘‘Typing Documents on UNIX,’’
dated November 22, 1974.

November 13, 1978

Typing Documents on the UNIX System:
Using the – ms Macros with Troff and Nroff

M M. . E E. . L Le es sk k

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction. This memorandum describes a package of commands to produce papers using the
troff and nroff formatting programs on the UNIX system. As with other roff -derived programs, text is
prepared interspersed with formatting commands. However, this package, which itself is written in troff
commands, provides higher-level commands than those provided with the basic troff program. The
commands available in this package are listed in Appendix A.

T Te ex xt t. . Type normally, except that instead of indenting for paragraphs, place a line reading ‘‘.PP’’
before each paragraph. This will produce indenting and extra space.

Alternatively, the command .LP that was used here will produce a left-aligned (block) paragraph. The
paragraph spacing can be changed: see below under ‘‘Registers.’’

B Be eg gi in nn ni in ng g. . For a document with a paper-type cover sheet, the input should start as follows:

[optional overall format .RP – see below]
.TL
Title of document (one or more lines)
.AU
Author(s) (may also be several lines)
.AI
Author’s institution(s)
.AB
Abstract; to be placed on the cover sheet of a paper.
Line length is 5/6 of normal; use .ll here to change.
.AE (abstract end)
text ... (begins with .PP, which see)

To omit some of the standard headings (e.g. no abstract, or no author’s institution) just omit the
corresponding fields and command lines. The word ABSTRACT can be suppressed by writing ‘‘.AB no’’
for ‘‘.AB’’. Several interspersed .AU and .AI lines can be used for multiple authors. The headings are
not compulsory: beginning with a .PP command is perfectly OK and will just start printing an ordinary
paragraph. W Wa ar rn ni in ng g: : You can’t just begin a document with a line of text. Some – ms command must
precede any text input. When in doubt, use .LP to get proper initialization, although any of the com-
mands .PP, .LP, .TL, .SH, .NH is good enough. Figure 1 shows the legal arrangement of commands at
the start of a document.

C Co ov ve er r S Sh he ee et ts s a an nd d F Fi ir rs st t P Pa ag ge es s. . The first line of a document signals the general format of the first
page. In particular, if it is ".RP" a cover sheet with title and abstract is prepared. The default format is
useful for scanning drafts.

In general – ms is arranged so that only one form of a document need be stored, containing all
information; the first command gives the format, and unnecessary items for that format are ignored.

Warning: don’t put extraneous material between the .TL and .AE commands. Processing of the
titling items is special, and other data placed in them may not behave as you expect. Don’t forget that
some – ms command must precede any input text.

P Pa ag ge e h he ea ad di in ng gs s. . The – ms macros, by default, will print a page heading containing a page number
(if greater than 1). A default page footer is provided only in n nr ro of ff f , where the date is used. The user

- 2 -

can make minor adjustments to the page headings/footings by redefining the strings LH, CH, and RH
which are the left, center and right portions of the page headings, respectively; and the strings LF, CF,
and RF, which are the left, center and right portions of the page footer. For more complex formats, the
user can redefine the macros PT and BT, which are invoked respectively at the top and bottom of each
page. The margins (taken from registers HM and FM for the top and bottom margin respectively) are
normally 1 inch; the page header/footer are in the middle of that space. The user who redefines these
macros should be careful not to change parameters such as point size or font without resetting them to
default values.

M Mu ul lt ti i- -c co ol lu um mn n f fo or rm ma at ts s. . If you place the
command ‘‘.2C’’ in your document, the docu-
ment will be printed in double column format
beginning at that point. This feature is not too
useful in computer terminal output, but is often
desirable on the typesetter. The command
‘‘.1C’’ will go back to one-column format and
also skip to a new page. The ‘‘.2C’’ command
is actually a special case of the command

.MC [column width [gutter width]]

which makes multiple columns with the
specified column and gutter width; as many
columns as will fit across the page are used.
Thus triple, quadruple, ... column pages can be
printed. Whenever the number of columns is
changed (except going from full width to some
larger number of columns) a new page is started.

H He ea ad di in ng gs s. . To produce a special heading,
there are two commands. If you type

.NH
type section heading here
may be several lines

you will get automatically numbered section
headings (1, 2, 3, ...), in boldface. For example,

.NH
Care and Feeding of Department Heads

produces

1. Care and Feeding of Department Heads

Alternatively,

.SH
Care and Feeding of Directors

will print the heading with no number added:

Care and Feeding of Directors

Every section heading, of either type,
should be followed by a paragraph beginning
with .PP or .LP, indicating the end of the head-
ing. Headings may contain more than one line
of text.

The .NH command also supports more
complex numbering schemes. If a numerical
argument is given, it is taken to be a ‘‘level’’
number and an appropriate sub-section number
is generated. Larger level numbers indicate
deeper sub-sections, as in this example:

.NH
Erie-Lackawanna
.NH 2
Morris and Essex Division
.NH 3
Gladstone Branch
.NH 3
Montclair Branch
.NH 2
Boonton Line

generates:

2. Erie-Lackawanna

2.1. Morris and Essex Division

2.1.1. Gladstone Branch

2.1.2. Montclair Branch

2.2. Boonton Line

An explicit ‘‘.NH 0’’ will reset the
numbering of level 1 to one, as here:

.NH 0
Penn Central

1. Penn Central

I In nd de en nt te ed d p pa ar ra ag gr ra ap ph hs s. . (Paragraphs with
hanging numbers, e.g. references.) The
sequence

.IP [1]
Text for first paragraph, typed
normally for as long as you would
like on as many lines as needed.
.IP [2]
Text for second paragraph, ...

produces

- 3 -

[1] Text for first paragraph, typed normally
for as long as you would like on as many
lines as needed.

[2] Text for second paragraph, ...

A series of indented paragraphs may be followed
by an ordinary paragraph beginning with .PP or
.LP, depending on whether you wish indenting
or not. The command .LP was used here.

More sophisticated uses of .IP are also
possible. If the label is omitted, for example, a
plain block indent is produced.

.IP
This material will
just be turned into a
block indent suitable for quotations or
such matter.
.LP

will produce

This material will just be turned into a
block indent suitable for quotations or
such matter.

If a non-standard amount of indenting is
required, it may be specified after the label (in
character positions) and will remain in effect
until the next .PP or .LP. Thus, the general
form of the .IP command contains two addi-
tional fields: the label and the indenting length.
For example,

.IP first: 9
Notice the longer label, requiring larger
indenting for these paragraphs.
.IP second:
And so forth.
.LP

produces this:

first: Notice the longer label, requiring
larger indenting for these paragraphs.

second: And so forth.

It is also possible to produce multiple nested
indents; the command .RS indicates that the next
.IP starts from the current indentation level.
Each .RE will eat up one level of indenting so
you should balance .RS and .RE commands.
The .RS command should be thought of as
‘‘move right’’ and the .RE command as ‘‘move
left’’. As an example

.IP 1.
Bell Laboratories
.RS
.IP 1.1
Murray Hill
.IP 1.2
Holmdel
.IP 1.3
Whippany
.RS
.IP 1.3.1
Madison
.RE
.IP 1.4
Chester
.RE
.LP

will result in

1. Bell Laboratories

1.1 Murray Hill

1.2 Holmdel

1.3 Whippany

1.3.1 Madison

1.4 Chester

All of these variations on .LP leave the right
margin untouched. Sometimes, for purposes
such as setting off a quotation, a paragraph
indented on both right and left is required.

A single paragraph like this is
obtained by preceding it with .QP.
More complicated material (several
paragraphs) should be bracketed
with .QS and .QE.

E Em mp ph ha as si is s. . To get italics (on the typesetter) or
underlining (on the terminal) say

.I
as much text as you want
can be typed here
.R

as was done for these three words. The .R com-
mand restores the normal (usually Roman) font.
If only one word is to be italicized, it may be
just given on the line with the .I command,

.I word

and in this case no .R is needed to restore the
previous font. Boldface can be produced by

- 4 -

.B
Text to be set in boldface
goes here
.R

and also will be underlined on the terminal or
line printer. As with .I, a single word can be
placed in boldface by placing it on the same line
as the .B command.

A few size changes can be specified simi-
larly with the commands .LG (make larger), .SM
(make smaller), and .NL (return to normal size).
The size change is two points; the commands
may be repeated for increased effect (here one .NL
canceled two .SM commands).

If actual underlining_ _________ as opposed to italiciz-
ing is required on the typesetter, the command

.UL word

will underline a word. There is no way to
underline multiple words on the typesetter.

F Fo oo ot tn no ot te es s. . Material placed between lines
with the commands .FS (footnote) and .FE (foot-
note end) will be collected, remembered, and
finally placed at the bottom of the current page*.
By default, footnotes are 11/12th the length of
normal text, but this can be changed using the
FL register (see below).

D Di is sp pl la ay ys s a an nd d T Ta ab bl le es s. . To prepare
displays of lines, such as tables, in which the
lines should not be re-arranged, enclose them in
the commands .DS and .DE

.DS
table lines, like the
examples here, are placed
between .DS and .DE
.DE

By default, lines between .DS and .DE are
indented and left-adjusted. You can also center
lines, or retain the left margin. Lines bracketed
by .DS C and .DE commands are centered (and
not re-arranged); lines bracketed by .DS L and
.DE are left-adjusted, not indented, and not re-
arranged. A plain .DS is equivalent to .DS I,
which indents and left-adjusts. Thus,

these lines were preceded
by .DS C and followed by

a .DE command;

whereas

* Like this.

these lines were preceded
by .DS L and followed by
a .DE command.

Note that .DS C centers each line; there is a
variant .DS B that makes the display into a left-
adjusted block of text, and then centers that
entire block. Normally a display is kept
together, on one page. If you wish to have a
long display which may be split across page
boundaries, use .CD, .LD, or .ID in place of the
commands .DS C, .DS L, or .DS I respectively.
An extra argument to the .DS I or .DS command
is taken as an amount to indent. Note: it is
tempting to assume that .DS R will right adjust
lines, but it doesn’t work.

B Bo ox xi in ng g w wo or rd ds s o or r l li in ne es s. . To draw rec-
tangular boxes around words the command

.BX word

will print word    _ ____ as shown. The boxes will not
be neat on a terminal, and this should not be
used as a substitute for italics.
Longer pieces of text may be boxed by enclos-
ing them with .B1 and .B2:

.B1
text...
.B2

as has been done here._ __








_ __









K Ke ee ep pi in ng g b bl lo oc ck ks s t to og ge et th he er r. . If you wish to
keep a table or other block of lines together on a
page, there are ‘‘keep - release’’ commands. If
a block of lines preceded by .KS and followed
by .KE does not fit on the remainder of the
current page, it will begin on a new page. Lines
bracketed by .DS and .DE commands are
automatically kept together this way. There is
also a ‘‘keep floating’’ command: if the block to
be kept together is preceded by .KF instead of
.KS and does not fit on the current page, it will
be moved down through the text until the top of
the next page. Thus, no large blank space will
be introduced in the document.

N Nr ro of ff f/ /T Tr ro of ff f c co om mm ma an nd ds s. . Among the useful
commands from the basic formatting programs
are the following. They all work with both
typesetter and computer terminal output:

- 5 -

.bp - begin new page.

.br - ‘‘break’’, stop running text
from line to line.

.sp n - insert n blank lines.

.na - don’t adjust right margins.

D Da at te e. . By default, documents produced on
computer terminals have the date at the bottom
of each page; documents produced on the
typesetter don’t. To force the date, say ‘‘.DA’’.
To force no date, say ‘‘.ND’’. To lie about the
date, say ‘‘.DA July 4, 1776’’ which puts the
specified date at the bottom of each page. The
command

.ND May 8, 1945

in ".RP" format places the specified date on the
cover sheet and nowhere else. Place this line
before the title.

S Si ig gn na at tu ur re e l li in ne e. . You can obtain a signa-
ture line by placing the command .SG in the
document. The authors’ names will be output in
place of the .SG line. An argument to .SG is
used as a typing identification line, and placed
after the signatures. The .SG command is
ignored in released paper format.

R Re eg gi is st te er rs s. . Certain of the registers used
by – ms can be altered to change default set-
tings. They should be changed with .nr com-
mands, as with

.nr PS 9

to make the default point size 9 point. If the
effect is needed immediately, the normal troff
command should be used in addition to chang-
ing the number register.

Register Defines Takes Default
effect

PS point size next para. 10
VS line spacing next para. 12 pts
LL line length next para. 6′′
LT title length next para. 6′′
PD para. spacing next para. 0.3 VS
PI para. indent next para. 5 ens
FL footnote length next FS 11/12 LL
CW column width next 2C 7/15 LL
GW intercolumn gap next 2C 1/15 LL
PO page offset next page 26/27′′
HM top margin next page 1′′
FM bottom margin next page 1′′

You may also alter the strings LH, CH, and RH
which are the left, center, and right headings
respectively; and similarly LF, CF, and RF
which are strings in the page footer. The page
number on output is taken from register PN, to

permit changing its output style. For more com-
plicated headers and footers the macros PT and
BT can be redefined, as explained earlier.

A Ac cc ce en nt ts s. . To simplify typing certain
foreign words, strings representing common
accent marks are defined. They precede the
letter over which the mark is to appear. Here
are the strings:

Input Output Input Output
*′e ´ e *˜a ˜ a
*`e ` e *Ce

v
e

*:u
. .
u *,c , c

*ˆe e ˆ

U Us se e. . After your document is prepared and
stored on a file, you can print it on a terminal
with the command*

nroff – ms file

and you can print it on the typesetter with the
command

troff – ms file

(many options are possible). In each case, if
your document is stored in several files, just list
all the filenames where we have used ‘‘file’’. If
equations or tables are used, eqn and/or tbl must
be invoked as preprocessors.

R Re ef fe er re en nc ce es s a an nd d f fu ur rt th he er r s st tu ud dy y. . If you
have to do Greek or mathematics, see e eq qn n [1]
for equation setting. To aid e eq qn n users, – – m ms s
provides definitions of .EQ and .EN which nor-
mally center the equation and set it off slightly.
An argument on .EQ is taken to be an equation
number and placed in the right margin near the
equation. In addition, there are three special
arguments to EQ: the letters C, I, and L indi-
cate centered (default), indented, and left
adjusted equations, respectively. If there is both
a format argument and an equation number, give
the format argument first, as in

.EQ L (1.3a)

for a left-adjusted equation numbered (1.3a).

Similarly, the macros .TS and .TE are
defined to separate tables (see [2]) from text
with a little space. A very long table with a
heading may be broken across pages by begin-
ning it with .TS H instead of .TS, and placing
the line .TH in the table data after the heading.

* If .2C was used, pipe the nroff output through col;
make the first line of the input ‘‘.pi /usr/bin/col.’’

- 6 -

If the table has no heading repeated from page
to page, just use the ordinary .TS and .TE mac-
ros.

To learn more about troff see [3] for a
general introduction, and [4] for the full details
(experts only). Information on related UNIX
commands is in [5]. For jobs that do not seem
well-adapted to – ms, consider other macro pack-
ages. It is often far easier to write a specific
macro packages for such tasks as imitating par-
ticular journals than to try to adapt – ms.

A Ac ck kn no ow wl le ed dg gm me en nt t. . Many thanks are due
to Brian Kernighan for his help in the design
and implementation of this package, and for his
assistance in preparing this manual.

References

[1] B. W. Kernighan and L. L. Cherry,
Typesetting Mathematics — Users Guide
(2nd edition), Bell Laboratories Comput-
ing Science Report no. 17.

[2] M. E. Lesk, Tbl — A Program to Format
Tables, Bell Laboratories Computing Sci-
ence Report no. 45.

[3] B. W. Kernighan, A Troff Tutorial, Bell
Laboratories, 1976.

[4] J. F. Ossanna, Nroff /Troff Reference
Manual, Bell Laboratories Computing Sci-
ence Report no. 51.

[5] K. Thompson and D. M. Ritchie, UNIX
Programmer’s Manual, Bell Laboratories,
1978.

- 7 -

Appendix A
List of Commands

1C Return to single column format. LG Increase type size.
2C Start double column format. LP Left aligned block paragraph.
AB Begin abstract.
AE End abstract.
AI Specify author’s institution.
AU Specify author. ND Change or cancel date.
B Begin boldface. NH Specify numbered heading.
DA Provide the date on each page. NL Return to normal type size.
DE End display. PP Begin paragraph.
DS Start display (also CD, LD, ID).
EN End equation. R Return to regular font (usually Roman).
EQ Begin equation. RE End one level of relative indenting.
FE End footnote. RP Use released paper format.
FS Begin footnote. RS Relative indent increased one level.

SG Insert signature line.
I Begin italics. SH Specify section heading.

SM Change to smaller type size.
IP Begin indented paragraph. TL Specify title.
KE Release keep.
KF Begin floating keep. UL Underline one word.
KS Start keep.

Register Names

The following register names are used by – ms internally. Independent use of these names in
one’s own macros may produce incorrect output. Note that no lower case letters are used in any – ms
internal name.

Number registers used in – ms
: DW GW HM IQ LL NA OJ PO T. TV
#T EF H1 HT IR LT NC PD PQ TB VS
1T FL H3 IK KI MM NF PF PX TD YE
AV FM H4 IM L1 MN NS PI RO TN YY
CW FP H5 IP LE MO OI PN ST TQ ZN

String registers used in – ms
′ A5 CB DW EZ I KF MR R1 RT TL
` AB CC DY FA I1 KQ ND R2 S0 TM
ˆ AE CD E1 FE I2 KS NH R3 S1 TQ
˜ AI CF E2 FJ I3 LB NL R4 S2 TS
: AU CH E3 FK I4 LD NP R5 SG TT
, B CM E4 FN I5 LG OD RC SH UL
1C BG CS E5 FO ID LP OK RE SM WB
2C BT CT EE FQ IE ME PP RF SN WH
A1 C D EL FS IM MF PT RH SY WT
A2 C1 DA EM FV IP MH PY RP TA XD
A3 C2 DE EN FY IZ MN QF RQ TE XF
A4 CA DS EQ HO KE MO R RS TH XK

- 8 -

RP

TL

AU

AI

NH, SH

AB

AE

PP, LP

text ...

Figure 1

A Guide to Preparing
Documents with – ms

M. E. Lesk

Bell Laboratories August 1978

_ ___

This guide gives some simple examples of
document preparation on Bell Labs computers,
emphasizing the use of the – – m ms s macro package. It
enormously abbreviates information in
1. T Ty yp pi in ng g D Do oc cu um me en nt ts s o on n U UN NI IX X a an nd d G GC CO OS S, , by

M. E. Lesk;
2. T Ty yp pe es se et tt ti in ng g M Ma at th he em ma at ti ic cs s – – U Us se er r’ ’s s G Gu ui id de e, , by

B. W. Kernighan and L. L. Cherry; and
3. T Tb bl l – – A A P Pr ro og gr ra am m t to o F Fo or rm ma at t T Ta ab bl le es s, , by M. E.

Lesk.
These memos are all included in the U UN NI IX X
P Pr ro og gr ra am mm me er r’ ’s s M Ma an nu ua al l, , V Vo ol lu um me e 2 2. . The new user
should also have A A T Tu ut to or ri ia al l I In nt tr ro od du uc ct ti io on n t to o t th he e
U UN NI IX X T Te ex xt t E Ed di it to or r, , by B. W. Kernighan.

For more detailed information, read A Ad dv va an nc ce ed d
E Ed di it ti in ng g o on n U UN NI IX X and A A T Tr ro of ff f T Tu ut to or ri ia al l, , by B. W.
Kernighan, and (for experts) N Nr ro of ff f / /T Tr ro of ff f R Re ef fe er re en nc ce e
M Ma an nu ua al l by J. F. Ossanna. Information on related
commands is found (for UNIX users) in U UN NI IX X f fo or r
B Be eg gi in nn ne er rs s by B. W. Kernighan and the U UN NI IX X
P Pr ro og gr ra am mm me er r’ ’s s M Ma an nu ua al l by K. Thompson and D. M.
Ritchie.

Contents

A TM . 2
A released paper 3
An internal memo, and headings 4
Lists, displays, and footnotes 5
Indents, keeps, and double column 6
Equations and registers 7
Tables and usage 8

Throughout the examples, input is shown in
this Helvetica sans serif font

while the resulting output is shown in
this Times Roman font.

UNIX Document no. 1111

2

C Co om mm ma an nd ds s f fo or r a a T TM M

.TM 1978-5b3 99999 99999-11

.ND April 1, 1976

.TL
The Role of the Allen Wrench in Modern
Electronics
.AU "MH 2G-111" 2345
J. Q. Pencilpusher
.AU "MH 1K-222" 5432
X. Y. Hardwired
.AI
.MH
.OK
Tools
Design
.AB
This abstract should be short enough to
fit on a single page cover sheet.
It must attract the reader into sending for
the complete memorandum.
.AE
.CS 10 2 12 5 6 7
.NH
Introduction.
.PP
Now the first paragraph of actual text ...
...
Last line of text.
.SG MH-1234-JQP/XYH-unix
.NH
References ...

Commands not needed in a particular format are ignored.

Bell Laboratories Bell Laboratories Cover Sheet for TM

__

This information is for employees of Bell Laboratories. (GEI 13.9-3)
__

Title- T Th he e R Ro ol le e o of f t th he e A Al ll le en n W Wr re en nc ch h
i in n M Mo od de er rn n E El le ec ct tr ro on ni ic cs s

Date- A Ap pr ri il l 1 1, , 1 19 97 76 6

TM- 1 19 97 78 8- -5 5b b3 3
Other Keywords- T To oo ol ls s

D De es si ig gn n

Author Location Ext. Charging Case- 99999 99999
J J. . Q Q. . P Pe en nc ci il lp pu us sh he er r M MH H 2 2G G- -1 11 11 1 2 23 34 45 5 Filing Case- 99999a 99999a
X X. . Y Y. . H Ha ar rd dw wi ir re ed d M MH H 1 1K K- -2 22 22 2 5 54 43 32 2

ABSTRACT

This abstract should be short enough to fit
on a single page cover sheet. It must attract the
reader into sending for the complete memoran-
dum.

__

Pages Text 10 Other 2 Total 12

No. Figures 5 No. Tables 6 No. Refs. 7





__

E-1932-U (6-73) SEE REVERSE SIDE FOR DISTRIBUTION LIST
























































__























































 __

3

A A R Re el le ea as se ed d P Pa ap pe er r w wi it th h M Ma at th he em ma at ti ic cs s

.EQ
delim $$
.EN
.RP

... (as for a TM)

.CS 10 2 12 5 6 7

.NH
Introduction
.PP
The solution to the torque handle equation
.EQ (1)
sum from 0 to inf F (x sub i) = G (x)
.EN
is found with the transformation $ x = rho over
theta $ where $ rho = G prime (x) $ and $theta$
is derived ...

T Th he e R Ro ol le e o of f t th he e A Al ll le en n W Wr re en nc ch h
i in n M Mo od de er rn n E El le ec ct tr ro on ni ic cs s

J. Q. Pencilpusher

X. Y. Hardwired

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This abstract should be short enough to fit on a sin-
gle page cover sheet. It must attract the reader into
sending for the complete memorandum.

April 1, 1976






























__





























 __

T Th he e R Ro ol le e o of f t th he e A Al ll le en n W Wr re en nc ch h
i in n M Mo od de er rn n E El le ec ct tr ro on ni ic cs s

J. Q. Pencilpusher

X. Y. Hardwired

Bell Laboratories
Murray Hill, New Jersey 07974

1 1. . I In nt tr ro od du uc ct ti io on n

The solution to the torque handle equation

0
Σ
∞

F (xi)=G (x) (1)

is found with the transformation x =
θ
ρ_ _ where ρ=G ′(x) and θ is

derived from well-known principles.



























__



























 __

4

A An n I In nt te er rn na al l M Me em mo or ra an nd du um m

.IM

.ND January 24, 1956

.TL
The 1956 Consent Decree
.AU
Able, Baker &
Charley, Attys.
.PP
Plaintiff, United States of America, having filed
its complaint herein on January 14, 1949; the
defendants having appeared and filed their
answer to such complaint denying the
substantive allegations thereof; and the parties,
by their attorneys, ...

B Be el ll l L La ab bo or ra at to or ri ie es s

Subject: T Th he e 1 19 95 56 6 C Co on ns se en nt t D De ec cr re ee e date: J Ja an nu ua ar ry y 2 24 4, , 1 19 95 56 6

from: A Ab bl le e, , B Ba ak ke er r & &
C Ch ha ar rl le ey y, , A At tt ty ys s. .

Plaintiff, United States of America, having filed its complaint
herein on January 14, 1949; the defendants having appeared and
filed their answer to such complaint denying the substantive alle-
gations thereof; and the parties, by their attorneys, having
severally consented to the entry of this Final Judgment without
trial or adjudication of any issues of fact or law herein and
without this Final Judgment constituting any evidence or admis-
sion by any party in respect of any such issues;

Now, therefore before any testimony has been taken herein,
and without trial or adjudication of any issue of fact or law
herein, and upon the consent of all parties hereto, it is hereby

Ordered, adjudged and decreed as follows:

I I. . [[S Sh he er rm ma an n A Ac ct t]]
This Court has jurisdiction of the subject matter herein and of

all the parties hereto. The complaint states a claim upon which
relief may be granted against each of the defendants under Sec-
tions 1, 2 and 3 of the Act of Congress of July 2, 1890, entitled
‘‘An act to protect trade and commerce against unlawful restraints
and monopolies,’’ commonly known as the Sherman Act, as
amended.

I II I. . [[D De efi fin ni it ti io on ns s]]
For the purposes of this Final Judgment:
(a) ‘‘Western’’ shall mean the defendant Western Electric

Company, Incorporated.










































__









































 __

Other formats possible (specify before .TL) are: .MR
(‘‘memo for record’’), .MF (‘‘memo for file’’), .EG
(‘‘engineer’s notes’’) and .TR (Computing Science Tech.
Report).

H He ea ad di in ng gs s

.NH .SH
Introduction. Appendix I
.PP .PP
text text text text text text

1 1. . I In nt tr ro od du uc ct ti io on n A Ap pp pe en nd di ix x I I

text text text text text text

5

A A S Si im mp pl le e L Li is st t

.IP 1.
J. Pencilpusher and X. Hardwired,
.I
A New Kind of Set Screw,
.R
Proc. IEEE
.B 75
(1976), 23-255.
.IP 2.
H. Nails and R. Irons,
.I
Fasteners for Printed Circuit Boards,
.R
Proc. ASME
.B 23
(1974), 23-24.
.LP (terminates list)

1. J. Pencilpusher and X. Hardwired, A New Kind of
Set Screw, Proc. IEEE 75 75 (1976), 23-255.

2. H. Nails and R. Irons, Fasteners for Printed Circuit
Boards, Proc. ASME 23 23 (1974), 23-24.

D Di is sp pl la ay ys s

text text text text text text
.DS
and now
for something
completely different
.DE
text text text text text text

hoboken harrison newark roseville avenue grove street
east orange brick church orange highland avenue moun-
tain station south orange maplewood millburn short hills
summit new providence

and now
for something
completely different

murray hill berkeley heights gillette stirling millington
lyons basking ridge bernardsville far hills peapack glad-
stone

Options: .DS L: left-adjust; .DS C: line-by-line center;
.DS B: make block, then center.

F Fo oo ot tn no ot te es s

Among the most important occupants
of the workbench are the long-nosed pliers.
Without these basic tools*
.FS
* As first shown by Tiger & Leopard
(1975).
.FE
few assemblies could be completed. They may
lack the popular appeal of the sledgehammer

Among the most important occupants of the workbench
are the long-nosed pliers. Without these basic tools* few
assemblies could be completed. They may lack the popu-
lar appeal of the sledgehammer

* As first shown by Tiger & Leopard (1975).

6

M Mu ul lt ti ip pl le e I In nd de en nt ts s

This is ordinary text to point out
the margins of the page.
.IP 1.
First level item
.RS
.IP a)
Second level.
.IP b)
Continued here with another second
level item, but somewhat longer.
.RE
.IP 2.
Return to previous value of the
indenting at this point.
.IP 3.
Another
line.

This is ordinary text to point out the margins of the page.
1. First level item

a) Second level.
b) Continued here with another second level item,

but somewhat longer.
2. Return to previous value of the indenting at this

point.
3. Another line.

K Ke ee ep ps s

Lines bracketed by the following commands are kept
together, and will appear entirely on one page:

.KS not moved .KF may float

.KE through text .KE in text

D Do ou ub bl le e C Co ol lu um mn n

.TL
The Declaration of Independence
.2C
.PP
When in the course of human events, it becomes
necessary for one people to dissolve the political
bonds which have connected them with another, and
to assume among the powers of the earth the
separate and equal station to which the laws of
Nature and of Nature’s God entitle them, a decent
respect to the opinions of

The Declaration of Independence

When in the course of
human events, it becomes
necessary for one people to
dissolve the political bonds
which have connected
them with another, and to
assume among the powers
of the earth the separate
and equal station to which
the laws of Nature and of
Nature’s God entitle them,
a decent respect to the
opinions of mankind re-
quires that they should de-
clare the causes which im-
pel them to the separation.

We hold these truths to
be self-evident, that all
men are created equal, that
they are endowed by their
creator with certain
unalienable rights, that
among these are life, liber-
ty, and the pursuit of hap-
piness. That to secure
these rights, governments
are instituted among men,

7

E Eq qu ua at ti io on ns s

A displayed equation is marked
with an equation number at the right margin
by adding an argument to the EQ line:
.EQ (1.3)
x sup 2 over a sup 2 ˜=˜ sqrt {p z sup 2 +qz+r}
.EN

A displayed equation is marked with an equation number
at the right margin by adding an argument to the EQ line:

a 2

x 2
_ __ = √pz2+qz +r (1.3)

.EQ I (2.2a)
bold V bar sub nu˜=˜left [pile {a above b above
c } right] + left [matrix { col { A(11) above .
above . } col { . above . above .} col {. above .
above A(33) }} right] cdot left [pile { alpha
above beta above gamma } right]
.EN

VV ν =


 c
b
a 



+



 .

.
A (11)

.

.

.

A (33)
.
. 



.


 γ

β
α 




(2.2a)

.EQ L
F hat (chi) ˜ mark = ˜  del V  sup 2
.EN
.EQ L
lineup =˜ {left ({partial V} over {partial x} right) }
sup 2 + { left ({partial V} over {partial y} right) }
sup 2 ˜˜˜˜˜˜ lambda -> inf
.EN

F̂ (χ) =  ∇V  2

=


 ∂x

∂V_ __




2

+


 ∂y

∂V_ __




2

λ→∞

$ a dot $, $ b dotdot$, $ xi tilde times y vec$:

a
.
, b

..
, ξ̃×y→. (with delim $$ on, see panel 3).

See also the equations in the second table, panel 8.

S So om me e R Re eg gi is st te er rs s Y Yo ou u C Ca an n C Ch ha an ng ge e

Line length
.nr LL 7i

Title length
.nr LT 7i

Point size
.nr PS 9

Vertical spacing
.nr VS 11

Column width
.nr CW 3i

Intercolumn spacing
.nr GW .5i

Margins – head and foot
.nr HM .75i
.nr FM .75i

Paragraph indent
.nr PI 2n

Paragraph spacing
.nr PD 0

Page offset
.nr PO 0.5i

Page heading
.ds CH Appendix

(center)
.ds RH 7-25-76

(right)
.ds LH Private

(left)

Page footer
.ds CF Draft
.ds LF
.ds RF similar

Page numbers
.nr % 3

8

T Ta ab bl le es s

.TS (T indicates a tab)
allbox;
c s s
c c c
n n n.
AT&T Common Stock
Year T Price T Dividend
1971 T 41-54 T $2.60
2 T 41-54 T 2.70
3 T 46-55 T 2.87
4 T 40-53 T 3.24
5 T 45-52 T 3.40
6 T 51-59 T .95*
.TE
* (first quarter only)

_ ____________________
AT&T Common Stock_ ____________________
Year Price Dividend_ ____________________
1971 41-54 $2.60_ ____________________

2 41-54 2.70_ ____________________
3 46-55 2.87_ ____________________
4 40-53 3.24_ ____________________
5 45-52 3.40_ ____________________
6 51-59 .95*_ ____________________ 








































* (first quarter only)

The meanings of the key-letters describing the alignment
of each entry are:

c center n numerical
r right-adjust a subcolumn
l left-adjust s spanned

The global table options are center, expand, box,
doublebox, allbox, tab (x x) and linesize (n n).

.TS (with delim $$ on, see panel 3)
doublebox, center;
c c
l l.
Name T Definition
.sp
Gamma T $GAMMA (z) = int sub 0 sup inf \

t sup {z-1} e sup -t dt$
Sine T $sin (x) = 1 over 2i (e sup ix - e sup -ix)$
Error T $ roman erf (z) = 2 over sqrt pi \

int sub 0 sup z e sup {-t sup 2} dt$
Bessel T $ J sub 0 (z) = 1 over pi \

int sub 0 sup pi cos (z sin theta) d theta $
Zeta T $ zeta (s) = \

sum from k=1 to inf k sup -s ˜˜(Re˜s > 1)$
.TE

_ _________________________________ _______________________________
Name Definition

Gamma Γ(z)=∫
0

∞
t z −1e −t dt

Sine sin(x)=
2i
1_ __(e ix −e −ix)

Error erf(z)=
√π
2_ __∫

0

z

e −t 2

dt

Bessel J 0(z)=
π
1_ _∫

0

π
cos(z sinθ)d θ

Zeta ζ(s)=
k =1
Σ
∞

k −s (Re s >1)
_ ________________________________ ________________________________ 



























































U Us sa ag ge e

Documents with just text:
troff -ms files

With equations only:
eqn files  troff -ms

With tables only:
tbl files  troff -ms

With both tables and equations:
tbl files  eqn  troff -ms______________________________

The above generates STARE output on GCOS: replace – st
with – ph for typesetter output.

A System for Typesetting Mathematics

Brian W. Kernighan and Lorinda L. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the design and implementation of a system for typesetting mathemat-
ics. The language has been designed to be easy to learn and to use by people (for example,
secretaries and mathematical typists) who know neither mathematics nor typesetting. Experience
indicates that the language can be learned in an hour or so, for it has few rules and fewer excep-
tions. For typical expressions, the size and font changes, positioning, line drawing, and the like
necessary to print according to mathematical conventions are all done automatically. For exam-
ple, the input

sum from i=0 to infinity x sub i = pi over 2

produces

i =0
Σ
∞

xi =
2
π_ _

The syntax of the language is specified by a small context-free grammar; a compiler-
compiler is used to make a compiler that translates this language into typesetting commands.
Output may be produced on either a phototypesetter or on a terminal with forward and reverse
half-line motions. The system interfaces directly with text formatting programs, so mixtures of
text and mathematics may be handled simply.

This paper is a revision of a paper originally published in CACM, March, 1975.

1. Introduction

‘‘Mathematics is known in the trade as
difficult, or penalty, copy because it is slower, more
difficult, and more expensive to set in type than any
other kind of copy normally occurring in books and
journals.’’ [1]

One difficulty with mathematical text is the
multiplicity of characters, sizes, and fonts. An
expression such as

x →π⁄2
lim (tan x)sin 2x = 1

requires an intimate mixture of roman, italic and
greek letters, in three sizes, and a special character or
two. (‘‘Requires’’ is perhaps the wrong word, but
mathematics has its own typographical conventions
which are quite different from those of ordinary text.)
Typesetting such an expression by traditional methods
is still an essentially manual operation.

A second difficulty is the two dimensional
character of mathematics, which the superscript and

limits in the preceding example showed in its simplest
form. This is carried further by

a 0+
a 1+

a 2+ a 3+ . . .
b 3_ _______

b 2_ ___________

b 1_ _______________

and still further by

∫
ae mx −be −mx

dx_ __________ =









 m √ab

−1_ _____ coth−1(
√b

√a_ ___emx)

m √ab

1_ _____ tanh−1(
√b

√a_ ___emx)

2m √ab

1_ ______ log
√a emx +√b

√a emx −√b_ _________

These examples also show line-drawing, built-up
characters like braces and radicals, and a spectrum of
positioning problems. (Section 6 shows what a user
has to type to produce these on our system.)

- 2 -

2. Photocomposition

Photocomposition techniques can be used to
solve some of the problems of typesetting mathemat-
ics. A phototypesetter is a device which exposes a
piece of photographic paper or film, placing charac-
ters wherever they are wanted. The Graphic Systems
phototypesetter[2] on the UNIX operating system[3]
works by shining light through a character stencil.
The character is made the right size by lenses, and
the light beam directed by fiber optics to the desired
place on a piece of photographic paper. The exposed
paper is developed and typically used in some form
of photo-offset reproduction.

On UNIX, the phototypesetter is driven by a
formatting program called TROFF [4]. TROFF was
designed for setting running text. It also provides all
of the facilities that one needs for doing mathematics,
such as arbitrary horizontal and vertical motions,
line-drawing, size changing, but the syntax for
describing these special operations is difficult to learn,
and difficult even for experienced users to type
correctly.

For this reason we decided to use TROFF as an
‘‘assembly language,’’ by designing a language for
describing mathematical expressions, and compiling it
into TROFF.

3. Language Design

The fundamental principle upon which we
based our language design is that the language should
be easy to use by people (for example, secretaries)
who know neither mathematics nor typesetting.

This principle implies several things. First,
‘‘normal’’ mathematical conventions about operator
precedence, parentheses, and the like cannot be used,
for to give special meaning to such characters means
that the user has to understand what he or she is typ-
ing. Thus the language should not assume, for
instance, that parentheses are always balanced, for
they are not in the half-open interval (a ,b]. Nor
should it assume that that √a +b can be replaced by

(a +b)
1⁄2, or that 1⁄(1−x) is better written as

1−x
1_ ___ (or

vice versa).

Second, there should be relatively few rules,
keywords, special symbols and operators, and the
like. This keeps the language easy to learn and
remember. Furthermore, there should be few excep-
tions to the rules that do exist: if something works in
one situation, it should work everywhere. If a vari-
able can have a subscript, then a subscript can have a
subscript, and so on without limit.

Third, ‘‘standard’’ things should happen
automatically. Someone who types ‘‘x=y+z+1’’
should get ‘‘x =y +z +1’’. Subscripts and superscripts
should automatically be printed in an appropriately
smaller size, with no special intervention. Fraction

bars have to be made the right length and positioned
at the right height. And so on. Indeed a mechanism
for overriding default actions has to exist, but its
application is the exception, not the rule.

We assume that the typist has a reasonable pic-
ture (a two-dimensional representation) of the desired
final form, as might be handwritten by the author of a
paper. We also assume that the input is typed on a
computer terminal much like an ordinary typewriter.
This implies an input alphabet of perhaps 100 charac-
ters, none of them special.

A secondary, but still important, goal in our
design was that the system should be easy to imple-
ment, since neither of the authors had any desire to
make a long-term project of it. Since our design was
not firm, it was also necessary that the program be
easy to change at any time.

To make the program easy to build and to
change, and to guarantee regularity (‘‘it should work
everywhere’’), the language is defined by a context-
free grammar, described in Section 5. The compiler
for the language was built using a compiler-compiler.

A priori, the grammar/compiler-compiler
approach seemed the right thing to do. Our subse-
quent experience leads us to believe that any other
course would have been folly. The original language
was designed in a few days. Construction of a work-
ing system sufficient to try significant examples
required perhaps a person-month. Since then, we
have spent a modest amount of additional time over
several years tuning, adding facilities, and occasion-
ally changing the language as users make criticisms
and suggestions.

We also decided quite early that we would let
TROFF do our work for us whenever possible.
TROFF is quite a powerful program, with a macro
facility, text and arithmetic variables, numerical com-
putation and testing, and conditional branching. Thus
we have been able to avoid writing a lot of mundane
but tricky software. For example, we store no text
strings, but simply pass them on to TROFF. Thus we
avoid having to write a storage management package.
Furthermore, we have been able to isolate ourselves
from most details of the particular device and charac-
ter set currently in use. For example, we let TROFF
compute the widths of all strings of characters; we
need know nothing about them.

A third design goal is special to our environ-
ment. Since our program is only useful for typeset-
ting mathematics, it is necessary that it interface
cleanly with the underlying typesetting language for
the benefit of users who want to set intermingled
mathematics and text (the usual case). The standard
mode of operation is that when a document is typed,
mathematical expressions are input as part of the text,
but marked by user settable delimiters. The program
reads this input and treats as comments those things

- 3 -

which are not mathematics, simply passing them
through untouched. At the same time it converts the
mathematical input into the necessary TROFF com-
mands. The resulting ioutput is passed directly to
TROFF where the comments and the mathematical
parts both become text and/or TROFF commands.

4. The Language

We will not try to describe the language pre-
cisely here; interested readers may refer to the appen-
dix for more details. Throughout this section, we will
write expressions exactly as they are handed to the
typesetting program (hereinafter called ‘‘EQN’’),
except that we won’t show the delimiters that the user
types to mark the beginning and end of the expres-
sion. The interface between EQN and TROFF is
described at the end of this section.

As we said, typing x=y+z+1 should produce
x =y +z +1, and indeed it does. Variables are made
italic, operators and digits become roman, and normal
spacings between letters and operators are altered
slightly to give a more pleasing appearance.

Input is free-form. Spaces and new lines in
the input are used by EQN to separate pieces of the
input; they are not used to create space in the output.
Thus

x = y
+ z + 1

also gives x =y +z +1. Free-form input is easier to
type initially; subsequent editing is also easier, for an
expression may be typed as many short lines.

Extra white space can be forced into the output
by several characters of various sizes. A tilde ‘‘ ˜ ’’
gives a space equal to the normal word spacing in
text; a circumflex gives half this much, and a tab
charcter spaces to the next tab stop.

Spaces (or tildes, etc.) also serve to delimit
pieces of the input. For example, to get

f (t)=2π∫ sin(ωt)dt

we write

f(t) = 2 pi int sin (omega t)dt

Here spaces are necessary in the input to indicate that
sin, pi, int, and omega are special, and potentially
worth special treatment. EQN looks up each such
string of characters in a table, and if appropriate gives
it a translation. In this case, pi and omega become
their greek equivalents, int becomes the integral sign
(which must be moved down and enlarged so it looks
‘‘right’’), and sin is made roman, following conven-
tional mathematical practice. Parentheses, digits and
operators are automatically made roman wherever
found.

Fractions are specified with the keyword over:

a+b over c+d+e = 1

produces

c +d +e
a +b_ ______=1

Similarly, subscripts and superscripts are intro-
duced by the keywords sub and sup:

x 2+y 2=z 2

is produced by

x sup 2 + y sup 2 = z sup 2

The spaces after the 2’s are necessary to mark the end
of the superscripts; similarly the keyword sup has to
be marked off by spaces or some equivalent delimiter.
The return to the proper baseline is automatic. Multi-
ple levels of subscripts or superscripts are of course
allowed: ‘‘x sup y sup z’’ is x yz

. The construct
‘‘something sub something sup something’’ is recog-
nized as a special case, so ‘‘x sub i sup 2’’ is xi

2

instead of xi
2.

More complicated expressions can now be
formed with these primitives:

∂x 2

∂2f_ ___=
a 2

x 2
_ __+

b 2

y 2
_ __

is produced by

{partial sup 2 f} over {partial x sup 2} =
x sup 2 over a sup 2 + y sup 2 over b sup 2

Braces {} are used to group objects together; in this
case they indicate unambiguously what goes over
what on the left-hand side of the expression. The
language defines the precedence of sup to be higher
than that of over, so no braces are needed to get the
correct association on the right side. Braces can
always be used when in doubt about precedence.

The braces convention is an example of the
power of using a recursive grammar to define the
language. It is part of the language that if a construct
can appear in some context, then any expression in
braces can also occur in that context.

There is a sqrt operator for making square
roots of the appropriate size: ‘‘sqrt a+b’’ produces
√a +b , and

x = {−b +− sqrt{b sup 2 −4ac}} over 2a

is

x =
2a

−b ±√b2−4ac_ ___________

Since large radicals look poor on our typesetter, sqrt
is not useful for tall expressions.

Limits on summations, integrals and similar
constructions are specified with the keywords from
and to. To get

i =0
Σ
∞

xi →0

- 4 -

we need only type

sum from i=0 to inf x sub i −> 0

Centering and making the Σ big enough and the limits
smaller are all automatic. The from and to parts are
both optional, and the central part (e.g., the Σ) can in
fact be anything:

lim from {x −> pi /2} (tan˜x) = inf

is

x →π⁄2
lim (tan x)=∞

Again, the braces indicate just what goes into the
from part.

There is a facility for making braces, brackets,
parentheses, and vertical bars of the right height,
using the keywords left and right:

left [x+y over 2a right]˜=˜1

makes



 2a

x +y_ ___




= 1

A left need not have a corresponding right, as we
shall see in the next example. Any characters may
follow left and right, but generally only various
parentheses and bars are meaningful.

Big brackets, etc., are often used with another
facility, called piles, which make vertical piles of
objects. For example, to get

sign (x) ≡





−1

0

1

if

if

if

x <0

x =0

x >0

we can type

sign (x) ˜==˜ left {
rpile {1 above 0 above −1}
˜˜lpile {if above if above if}
˜˜lpile {x>0 above x=0 above x<0}

The construction ‘‘left {’’ makes a left brace big
enough to enclose the ‘‘rpile {...}’’, which is a right-
justified pile of ‘‘above ... above ...’’. ‘‘lpile’’ makes
a left-justified pile. There are also centered piles.
Because of the recursive language definition, a pile
can contain any number of elements; any element of a
pile can of course contain piles.

Although EQN makes a valiant attempt to use
the right sizes and fonts, there are times when the
default assumptions are simply not what is wanted.
For instance the italic sign in the previous example
would conventionally be in roman. Slides and tran-
sparencies often require larger characters than normal
text. Thus we also provide size and font changing
commands: ‘‘size 12 bold {A˜x˜=˜y}’’ will produce
A x = y. Size is followed by a number represent-
ing a character size in points. (One point is 1/72

inch; this paper is set in 9 point type.)

If necessary, an input string can be quoted in
"...", which turns off grammatical significance, and
any font or spacing changes that might otherwise be
done on it. Thus we can say

lim˜ roman "sup" ˜x sub n = 0

to ensure that the supremum doesn’t become a super-
script:

lim sup xn =0

Diacritical marks, long a problem in traditional
typesetting, are straightforward:

x
.
_ +x̂ +ỹ +X̂ +Y

..
=z +Z 

is made by typing

x dot under + x hat + y tilde
+ X hat + Y dotdot = z+Z bar

There are also facilities for globally changing
default sizes and fonts, for example for making view-
graphs or for setting chemical equations. The
language allows for matrices, and for lining up equa-
tions at the same horizontal position.

Finally, there is a definition facility, so a user
can say

define name "..."

at any time in the document; henceforth, any
occurrence of the token ‘‘name’’ in an expression will
be expanded into whatever was inside the double
quotes in its definition. This lets users tailor the
language to their own specifications, for it is quite
possible to redefine keywords like sup or over. Sec-
tion 6 shows an example of definitions.

The EQN preprocessor reads intermixed text
and equations, and passes its output to TROFF. Since
TROFF uses lines beginning with a period as control
words (e.g., ‘‘.ce’’ means ‘‘center the next output
line’’), EQN uses the sequence ‘‘.EQ’’ to mark the
beginning of an equation and ‘‘.EN’’ to mark the end.
The ‘‘.EQ’’ and ‘‘.EN’’ are passed through to TROFF
untouched, so they can also be used by a knowledge-
able user to center equations, number them automati-
cally, etc. By default, however, ‘‘.EQ’’ and ‘‘.EN’’
are simply ignored by TROFF, so by default equations
are printed in-line.

‘‘.EQ’’ and ‘‘.EN’’ can be supplemented by
TROFF commands as desired; for example, a centered
display equation can be produced with the input:

.ce

.EQ
x sub i = y sub i ...
.EN

Since it is tedious to type ‘‘.EQ’’ and ‘‘.EN’’
around very short expressions (single letters, for

- 5 -

instance), the user can also define two characters to
serve as the left and right delimiters of expressions.
These characters are recognized anywhere in subse-
quent text. For example if the left and right delim-
iters have both been set to ‘‘#’’, the input:

Let #x sub i#, #y# and #alpha# be positive

produces:

Let xi , y and α be positive

Running a preprocessor is strikingly easy on
UNIX. To typeset text stored in file ‘‘f ’’, one issues
the command:

eqn f  troff

The vertical bar connects the output of one process
(EQN) to the input of another (TROFF).

5. Language Theory

The basic structure of the language is not a
particularly original one. Equations are pictured as a
set of ‘‘boxes,’’ pieced together in various ways. For
example, something with a subscript is just a box fol-
lowed by another box moved downward and shrunk
by an appropriate amount. A fraction is just a box
centered above another box, at the right altitude, with
a line of correct length drawn between them.

The grammar for the language is shown below.
For purposes of exposition, we have collapsed some
productions. In the original grammar, there are about
70 productions, but many of these are simple ones
used only to guarantee that some keyword is recog-
nized early enough in the parsing process. Symbols
in capital letters are terminal symbols; lower case
symbols are non-terminals, i.e., syntactic categories.
The vertical bar  indicates an alternative; the brack-
ets [] indicate optional material. A TEXT is a string
of non-blank characters or any string inside double
quotes; the other terminal symbols represent literal
occurrences of the corresponding keyword.

eqn : box  eqn box

box : text
 { eqn }
 box OVER box
 SQRT box
 box SUB box  box SUP box
 [L  C  R]PILE { list }
 LEFT text eqn [RIGHT text]
 box [FROM box] [TO box]
 SIZE text box
 [ROMAN  BOLD  ITALIC] box
 box [HAT  BAR  DOT  DOTDOT  TILDE]
 DEFINE text text

list : eqn  list ABOVE eqn

text : TEXT

The grammar makes it obvious why there are
few exceptions. For example, the observation that
something can be replaced by a more complicated
something in braces is implicit in the productions:

eqn : box  eqn box
box : text  { eqn }

Anywhere a single character could be used, any legal
construction can be used.

Clearly, our grammar is highly ambiguous.
What, for instance, do we do with the input

a over b over c ?

Is it

{a over b} over c

or is it

a over {b over c} ?

To answer questions like this, the grammar is
supplemented with a small set of rules that describe
the precedence and associativity of operators. In par-
ticular, we specify (more or less arbitrarily) that over
associates to the left, so the first alternative above is
the one chosen. On the other hand, sub and sup bind
to the right, because this is closer to standard
mathematical practice. That is, we assume x ab

is
x (ab), not (x a)b .

The precedence rules resolve the ambiguity in
a construction like

a sup 2 over b

We define sup to have a higher precedence than over,

so this construction is parsed as
b
a 2
_ __ instead of a b

2_ _

.

Naturally, a user can always force a particular
parsing by placing braces around expressions.

The ambiguous grammar approach seems to be
quite useful. The grammar we use is small enough to
be easily understood, for it contains none of the pro-
ductions that would be normally used for resolving
ambiguity. Instead the supplemental information
about precedence and associativity (also small enough
to be understood) provides the compiler-compiler with
the information it needs to make a fast, deterministic
parser for the specific language we want. When the
language is supplemented by the disambiguating
rules, it is in fact LR(1) and thus easy to parse[5].

The output code is generated as the input is
scanned. Any time a production of the grammar is
recognized, (potentially) some TROFF commands are
output. For example, when the lexical analyzer
reports that it has found a TEXT (i.e., a string of con-
tiguous characters), we have recognized the produc-
tion:

text : TEXT

- 6 -

The translation of this is simple. We generate a local
name for the string, then hand the name and the
string to TROFF, and let TROFF perform the storage
management. All we save is the name of the string,
its height, and its baseline.

As another example, the translation associated
with the production

box : box OVER box

is:

Width of output box =
slightly more than largest input width

Height of output box =
slightly more than sum of input heights

Base of output box =
slightly more than height of bottom input box

String describing output box =
move down;
move right enough to center bottom box;
draw bottom box (i.e., copy string for bottom box);
move up; move left enough to center top box;
draw top box (i.e., copy string for top box);
move down and left; draw line full width;
return to proper base line.

Most of the other productions have equally simple
semantic actions. Picturing the output as a set of
properly placed boxes makes the right sequence of
positioning commands quite obvious. The main
difficulty is in finding the right numbers to use for
esthetically pleasing positioning.

With a grammar, it is usually clear how to
extend the language. For instance, one of our users
suggested a TENSOR operator, to make constructions
like

m
l

n
T
k

i

j

Grammatically, this is easy: it is sufficient to add a
production like

box : TENSOR { list }

Semantically, we need only juggle the boxes to the
right places.

6. Experience

There are really three aspects of interest—how
well EQN sets mathematics, how well it satisfies its
goal of being ‘‘easy to use,’’ and how easy it was to
build.

The first question is easily addressed. This
entire paper has been set by the program. Readers
can judge for themselves whether it is good enough
for their purposes. One of our users commented that
although the output is not as good as the best hand-
set material, it is still better than average, and much
better than the worst. In any case, who cares?
Printed books cannot compete with the birds and

flowers of illuminated manuscripts on esthetic
grounds, either, but they have some clear economic
advantages.

Some of the deficiencies in the output could be
cleaned up with more work on our part. For exam-
ple, we sometimes leave too much space between a
roman letter and an italic one. If we were willing to
keep track of the fonts involved, we could do this
better more of the time.

Some other weaknesses are inherent in our out-
put device. It is hard, for instance, to draw a line of
an arbitrary length without getting a perceptible over-
strike at one end.

As to ease of use, at the time of writing, the
system has been used by two distinct groups. One
user population consists of mathematicians, chemists,
physicists, and computer scientists. Their typical
reaction has been something like:

(1) It’s easy to write, although I make the follow-
ing mistakes...

(2) How do I do...?

(3) It botches the following things.... Why don’t
you fix them?

(4) You really need the following features...

The learning time is short. A few minutes
gives the general flavor, and typing a page or two of
a paper generally uncovers most of the misconcep-
tions about how it works.

The second user group is much larger, the
secretaries and mathematical typists who were the ori-
ginal target of the system. They tend to be enthusias-
tic converts. They find the language easy to learn
(most are largely self-taught), and have little trouble
producing the output they want. They are of course
less critical of the esthetics of their output than users
trained in mathematics. After a transition period,
most find using a computer more interesting than a
regular typewriter.

The main difficulty that users have seems to be
remembering that a blank is a delimiter; even experi-
enced users use blanks where they shouldn’t and omit
them when they are needed. A common instance is
typing

f(x sub i)

which produces

f (xi)

instead of

f (xi)

Since the EQN language knows no mathematics, it
cannot deduce that the right parenthesis is not part of
the subscript.

The language is somewhat prolix, but this

- 7 -

doesn’t seem excessive considering how much is
being done, and it is certainly more compact than the
corresponding TROFF commands. For example, here
is the source for the continued fraction expression in
Section 1 of this paper:

a sub 0 + b sub 1 over
{a sub 1 + b sub 2 over

{a sub 2 + b sub 3 over
{a sub 3 + ... }}}

This is the input for the large integral of Section 1;
notice the use of definitions:

define emx "{e sup mx}"
define mab "{m sqrt ab}"
define sa "{sqrt a}"
define sb "{sqrt b}"
int dx over {a emx − be sup −mx} ˜=˜
left { lpile {

1 over {2 mab} ˜log˜
{sa emx − sb} over {sa emx + sb}

above
1 over mab ˜ tanh sup −1 (sa over sb emx)

above
−1 over mab ˜ coth sup −1 (sa over sb emx)

}

As to ease of construction, we have already
mentioned that there are really only a few person-
months invested. Much of this time has gone into
two things—fine-tuning (what is the most esthetically
pleasing space to use between the numerator and
denominator of a fraction?), and changing things
found deficient by our users (shouldn’t a tilde be a
delimiter?).

The program consists of a number of small,
essentially unconnected modules for code generation,
a simple lexical analyzer, a canned parser which we
did not have to write, and some miscellany associated
with input files and the macro facility. The program
is now about 1600 lines of C [6], a high-level
language reminiscent of BCPL. About 20 percent of
these lines are ‘‘print’’ statements, generating the out-
put code.

The semantic routines that generate the actual
TROFF commands can be changed to accommodate
other formatting languages and devices. For example,
in less than 24 hours, one of us changed the entire
semantic package to drive NROFF, a variant of
TROFF, for typesetting mathematics on teletypewriter
devices capable of reverse line motions. Since many
potential users do not have access to a typesetter, but
still have to type mathematics, this provides a way to
get a typed version of the final output which is close
enough for debugging purposes, and sometimes even
for ultimate use.

7. Conclusions

We think we have shown that it is possible to
do acceptably good typesetting of mathematics on a
phototypesetter, with an input language that is easy to
learn and use and that satisfies many users’ demands.
Such a package can be implemented in short order,
given a compiler-compiler and a decent typesetting
program underneath.

Defining a language, and building a compiler
for it with a compiler-compiler seems like the only
sensible way to do business. Our experience with the
use of a grammar and a compiler-compiler has been
uniformly favorable. If we had written everything
into code directly, we would have been locked into
our original design. Furthermore, we would have
never been sure where the exceptions and special
cases were. But because we have a grammar, we can
change our minds readily and still be reasonably sure
that if a construction works in one place it will work
everywhere.

Acknowledgements

We are deeply indebted to J. F. Ossanna, the
author of TROFF, for his willingness to modify
TROFF to make our task easier and for his continuous
assistance during the development of our program.
We are also grateful to A. V. Aho for help with
language theory, to S. C. Johnson for aid with the
compiler-compiler, and to our early users A. V. Aho,
S. I. Feldman, S. C. Johnson, R. W. Hamming, and
M. D. McIlroy for their constructive criticisms.

References

[1] A Manual of Style, 12th Edition. University of
Chicago Press, 1969. p 295.

[2] Model C/A/T Phototypesetter. Graphic Sys-
tems, Inc., Hudson, N. H.

[3] Ritchie, D. M., and Thompson, K. L., ‘‘The
UNIX time-sharing system.’’ Comm. ACM 17,
7 (July 1974), 365-375.

[4] Ossanna, J. F., TROFF User’s Manual. Bell
Laboratories Computing Science Technical
Report 54, 1977.

[5] Aho, A. V., and Johnson, S. C., ‘‘LR Pars-
ing.’’ Comp. Surv. 6, 2 (June 1974), 99-124.

[6] B. W. Kernighan and D. M. Ritchie, The C
Programming Language. Prentice-Hall, Inc.,
1978.

Typesetting Mathematics — User’s Guide (Second Edition)

Brian W. Kernighan and Lorinda L. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This is the user’s guide for a system for typesetting mathematics, using the phototypesetters on the
UNIX† and GCOS operating systems.

Mathematical expressions are described in a language designed to be easy to use by people who
know neither mathematics nor typesetting. Enough of the language to set in-line expressions like

x →π⁄2
lim (tan x)sin 2x = 1 or display equations like

G (z) = e ln G (z) = exp


k ≥1
Σ k

Sk z k
_ ____





=
k ≥1
Πe

S
k
zk ⁄k

=



1+S 1z +

2!

S 1
2z 2

_ ____+ . . .







1+

2

S 2z
2

_ ____+
22.2!

S 2
2z 4

_ ____+ . . .




. . .

=
m ≥0
Σ





k

1
+2k

2
+ . . . +mk

m
=m

k
1
,k

2
, . . . , k

m
≥0

Σ
1

k
1k 1!

S 1
k

1

_ _____
2

k
2k 2!

S 2
k

2

_ _____ . . .
m

k
m km !

Sm
k

m

_ ______






z m

can be learned in an hour or so.

The language interfaces directly with the phototypesetting language TROFF, so mathematical
expressions can be embedded in the running text of a manuscript, and the entire document produced in
one process. This user’s guide is an example of its output.

The same language may be used with the UNIX formatter NROFF to set mathematical expressions
on DASI and GSI terminals and Model 37 teletypes.

August 15, 1978

_ ______________
†UNIX is a Trademark of Bell Laboratories.

Typesetting Mathematics — User’s Guide (Second Edition)

Brian W. Kernighan and Lorinda L. Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction

EQN is a program for typesetting
mathematics on the Graphics Systems photo-
typesetters on UNIX and GCOS. The EQN

language was designed to be easy to use by peo-
ple who know neither mathematics nor typeset-
ting. Thus EQN knows relatively little about
mathematics. In particular, mathematical sym-
bols like +, −, ×, parentheses, and so on have no
special meanings. EQN is quite happy to set gar-
bage (but it will look good).

EQN works as a preprocessor for the
typesetter formatter, TROFF[1], so the normal
mode of operation is to prepare a document with
both mathematics and ordinary text interspersed,
and let EQN set the mathematics while TROFF

does the body of the text.

On UNIX, EQN will also produce
mathematics on DASI and GSI terminals and on
Model 37 teletypes. The input is identical, but
you have to use the programs NEQN and NROFF

instead of EQN and TROFF. Of course, some
things won’t look as good because terminals
don’t provide the variety of characters, sizes and
fonts that a typesetter does, but the output is
usually adequate for proofreading.

To use EQN on UNIX,

eqn files  troff

GCOS use is discussed in section 26.

2. Displayed Equations

To tell EQN where a mathematical expres-
sion begins and ends, we mark it with lines
beginning .EQ and .EN. Thus if you type the
lines

.EQ
x=y+z
.EN

your output will look like

x =y +z

The .EQ and .EN are copied through untouched;
they are not otherwise processed by EQN. This
means that you have to take care of things like
centering, numbering, and so on yourself. The
most common way is to use the TROFF and
NROFF macro package package ‘−ms’ developed
by M. E. Lesk[3], which allows you to center,
indent, left-justify and number equations.

With the ‘−ms’ package, equations are
centered by default. To left-justify an equation,
use .EQ L instead of .EQ. To indent it, use .EQ I.
Any of these can be followed by an arbitrary
‘equation number’ which will be placed at the
right margin. For example, the input

.EQ I (3.1a)
x = f(y/2) + y/2
.EN

produces the output

x =f (y ⁄2)+y ⁄2 (3.1a)

There is also a shorthand notation so in-
line expressions like πi

2 can be entered without
.EQ and .EN. We will talk about it in section 19.

3. Input spaces

Spaces and newlines within an expression
are thrown away by EQN. (Normal text is left
absolutely alone.) Thus between .EQ and .EN,

x=y+z

and

x = y + z

and

x = y
+ z

and so on all produce the same output

x =y +z

- 2 -

You should use spaces and newlines freely to
make your input equations readable and easy to
edit. In particular, very long lines are a bad
idea, since they are often hard to fix if you make
a mistake.

4. Output spaces

To force extra spaces into the output, use
a tilde ‘‘ ˜ ’’ for each space you want:

x˜=˜y˜+˜z

gives

x = y + z

You can also use a circumflex ‘‘ˆ’’, which gives
a space half the width of a tilde. It is mainly
useful for fine-tuning. Tabs may also be used to
position pieces of an expression, but the tab
stops must be set by TROFF commands.

5. Symbols, Special Names, Greek

EQN knows some mathematical symbols,
some mathematical names, and the Greek alpha-
bet. For example,

x=2 pi int sin (omega t)dt

produces

x =2π∫ sin(ωt)dt

Here the spaces in the input are necessary to tell
EQN that int, pi, sin and omega are separate enti-
ties that should get special treatment. The sin,
digit 2, and parentheses are set in roman type
instead of italic; pi and omega are made Greek;
and int becomes the integral sign.

When in doubt, leave spaces around
separate parts of the input. A very common
error is to type f(pi) without leaving spaces on
both sides of the pi. As a result, EQN does not
recognize pi as a special word, and it appears as
f (pi) instead of f (π).

A complete list of EQN names appears in
section 23. Knowledgeable users can also use
TROFF four-character names for anything EQN

doesn’t know about, like \(bs for the Bell Sys-
tem sign .

6. Spaces, Again

The only way EQN can deduce that some
sequence of letters might be special is if that
sequence is separated from the letters on either
side of it. This can be done by surrounding a
special word by ordinary spaces (or tabs or new-

lines), as we did in the previous section.

You can also make special words stand
out by surrounding them with tildes or
circumflexes:

x˜=˜2˜pi˜int˜sin˜(˜omega˜t˜)˜dt

is much the same as the last example, except
that the tildes not only separate the magic words
like sin, omega, and so on, but also add extra
spaces, one space per tilde:

x = 2 π ∫ sin (ω t) dt

Special words can also be separated by
braces { } and double quotes "...", which have
special meanings that we will see soon.

7. Subscripts and Superscripts

Subscripts and superscripts are obtained
with the words sub and sup.

x sup 2 + y sub k

gives

x 2+yk

EQN takes care of all the size changes and verti-
cal motions needed to make the output look
right. The words sub and sup must be sur-
rounded by spaces; x sub2 will give you xsub 2
instead of x 2. Furthermore, don’t forget to leave
a space (or a tilde, etc.) to mark the end of a
subscript or superscript. A common error is to
say something like

y = (x sup 2)+1

which causes

y =(x 2)+1

instead of the intended

y =(x 2)+1

Subscripted subscripts and superscripted
superscripts also work:

x sub i sub 1

is

xi
1

A subscript and superscript on the same thing
are printed one above the other if the subscript
comes first:

x sub i sup 2

is

- 3 -

xi
2

Other than this special case, sub and sup
group to the right, so x sup y sub z means x

y
z ,

not xy
z .

8. Braces for Grouping

Normally, the end of a subscript or super-
script is marked simply by a blank (or tab or
tilde, etc.) What if the subscript or superscript
is something that has to be typed with blanks in
it? In that case, you can use the braces { and }
to mark the beginning and end of the subscript
or superscript:

e sup {i omega t}

is

e i ωt

Rule: Braces can always be used to force EQN

to treat something as a unit, or just to make your
intent perfectly clear. Thus:

x sub {i sub 1} sup 2

is

xi
1

2

with braces, but

x sub i sub 1 sup 2

is

xi 1
2

which is rather different.

Braces can occur within braces if neces-
sary:

e sup {i pi sup {rho +1}}

is

e i πρ+1

The general rule is that anywhere you could use
some single thing like x, you can use an arbi-
trarily complicated thing if you enclose it in
braces. EQN will look after all the details of
positioning it and making it the right size.

In all cases, make sure you have the right
number of braces. Leaving one out or adding an
extra will cause EQN to complain bitterly.

Occasionally you will have to print braces.
To do this, enclose them in double quotes, like
"{". Quoting is discussed in more detail in sec-

tion 14.

9. Fractions

To make a fraction, use the word over:

a+b over 2c =1

gives

2c
a +b_ ____=1

The line is made the right length and positioned
automatically. Braces can be used to make clear
what goes over what:

{alpha + beta} over {sin (x)}

is

sin(x)
α+β_ _____

What happens when there is both an over and a
sup in the same expression? In such an
apparently ambiguous case, EQN does the sup
before the over, so

−b sup 2 over pi

is
π

−b 2
_ ___ instead of −b π

2_ _

The rules which decide

which operation is done first in cases like this
are summarized in section 23. When in doubt,
however, use braces to make clear what goes
with what.

10. Square Roots

To draw a square root, use sqrt:

sqrt a+b + 1 over sqrt {ax sup 2 +bx+c}

is

√ a +b +
√ ax 2+bx +c

1___________

Warning — square roots of tall quantities look
lousy, because a root-sign big enough to cover
the quantity is too dark and heavy:

sqrt {a sup 2 over b sub 2}

is

√b 2

a 2
_ __

Big square roots are generally better written as
something to the power 1⁄2 :

(a 2⁄b 2)
1⁄2

which is

- 4 -

(a sup 2 /b sub 2) sup half

11. Summation, Integral, Etc.

Summations, integrals, and similar con-
structions are easy:

sum from i=0 to {i= inf} x sup i

produces

i =0
Σ
i =∞

x i

Notice that we used braces to indicate where the
upper part i =∞ begins and ends. No braces
were necessary for the lower part i =0, because it
contained no blanks. The braces will never hurt,
and if the from and to parts contain any blanks,
you must use braces around them.

The from and to parts are both optional,
but if both are used, they have to occur in that
order.

Other useful characters can replace the
sum in our example:

int prod union inter

become, respectively,

∫ Π ∪ ∩
Since the thing before the from can be anything,
even something in braces, from-to can often be
used in unexpected ways:

lim from {n −> inf} x sub n =0

is

n →∞
lim xn =0

12. Size and Font Changes

By default, equations are set in 10-point
type (the same size as this guide), with standard
mathematical conventions to determine what
characters are in roman and what in italic.
Although EQN makes a valiant attempt to use
esthetically pleasing sizes and fonts, it is not
perfect. To change sizes and fonts, use size n
and roman, italic, bold and fat. Like sub and
sup, size and font changes affect only the thing
that follows them, and revert to the normal
situation at the end of it. Thus

bold x y

is

xy

and

size 14 bold x = y +
size 14 {alpha + beta}

gives

x=y +α+β
As always, you can use braces if you want to
affect something more complicated than a single
letter. For example, you can change the size of
an entire equation by

size 12 { ... }

Legal sizes which may follow size are 6,
7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28,
36. You can also change the size by a given
amount; for example, you can say size +2 to
make the size two points bigger, or size −3 to
make it three points smaller. This has the
advantage that you don’t have to know what the
current size is.

If you are using fonts other than roman,
italic and bold, you can say font X where X is a
one character TROFF name or number for the
font. Since EQN is tuned for roman, italic and
bold, other fonts may not give quite as good an
appearance.

The fat operation takes the current font
and widens it by overstriking: fat grad is ∇ ∇ and
fat {x sub i} is xixi .

If an entire document is to be in a non-
standard size or font, it is a severe nuisance to
have to write out a size and font change for each
equation. Accordingly, you can set a ‘‘global’’
size or font which thereafter affects all equa-
tions. At the beginning of any equation, you
might say, for instance,

.EQ
gsize 16
gfont R
...

.EN

to set the size to 16 and the font to roman
thereafter. In place of R, you can use any of the
TROFF font names. The size after gsize can be a
relative change with + or −.

Generally, gsize and gfont will appear at
the beginning of a document but they can also
appear thoughout a document: the global font
and size can be changed as often as needed. For

- 5 -

example, in a footnote‡ you will typically want
the size of equations to match the size of the
footnote text, which is two points smaller than
the main text. Don’t forget to reset the global
size at the end of the footnote.

13. Diacritical Marks

To get funny marks on top of letters, there
are several words:

x dot x
.

x dotdot x
..

x hat x̂
x tilde x̃
x vec x→

x dyad x← →

x bar x
x under x_

The diacritical mark is placed at the right height.
The bar and under are made the right length for
the entire construct, as in x +y +z  ; other marks
are centered.

14. Quoted Text

Any input entirely within quotes ("...") is
not subject to any of the font changes and spac-
ing adjustments normally done by the equation
setter. This provides a way to do your own
spacing and adjusting if needed:

italic "sin(x)" + sin (x)

is

sin(x) +sin(x)

Quotes are also used to get braces and
other EQN keywords printed:

"{ size alpha }"

is

{ size alpha }

and

roman "{ size alpha }"

is

{ size alpha }

The construction "" is often used as a
place-holder when grammatically EQN needs

‡Like this one, in which we have a few random
expressions like xi and π2. The sizes for these were set
by the command gsize −2.

something, but you don’t actually want anything
in your output. For example, to make 2He, you
can’t just type sup 2 roman He because a sup
has to be a superscript on something. Thus you
must say

"" sup 2 roman He

To get a literal quote use ‘‘\"’’. TROFF

characters like \(bs can appear unquoted, but
more complicated things like horizontal and
vertical motions with \h and \v should always be
quoted. (If you’ve never heard of \h and \v,
ignore this section.)

15. Lining Up Equations

Sometimes it’s necessary to line up a
series of equations at some horizontal position,
often at an equals sign. This is done with two
operations called mark and lineup.

The word mark may appear once at any
place in an equation. It remembers the horizon-
tal position where it appeared. Successive equa-
tions can contain one occurrence of the word
lineup. The place where lineup appears is made
to line up with the place marked by the previous
mark if at all possible. Thus, for example, you
can say

.EQ I
x+y mark = z
.EN
.EQ I
x lineup = 1
.EN

to produce

x +y =z

x =1

For reasons too complicated to talk about, when
you use EQN and ‘−ms’, use either .EQ I or .EQ L.
mark and lineup don’t work with centered equa-
tions. Also bear in mind that mark doesn’t look
ahead;

x mark =1
...

x+y lineup =z

isn’t going to work, because there isn’t room for
the x+y part after the mark remembers where the
x is.

- 6 -

16. Big Brackets, Etc.

To get big brackets [], braces { },
parentheses (), and bars   around things, use
the left and right commands:

left { a over b + 1 right }
˜=˜ left (c over d right)
+ left [e right]

is



 b

a_ _+1




=


 d

c_ _



+ 

e



The resulting brackets are made big enough to
cover whatever they enclose. Other characters
can be used besides these, but the are not likely
to look very good. One exception is the floor
and ceiling characters:

left floor x over y right floor
<= left ceiling a over b right ceiling

produces



 y

x_ _



≤



 b

a_ _




Several warnings about brackets are in
order. First, braces are typically bigger than
brackets and parentheses, because they are made
up of three, five, seven, etc., pieces, while brack-
ets can be made up of two, three, etc. Second,
big left and right parentheses often look poor,
because the character set is poorly designed.

The right part may be omitted: a ‘‘left
something’’ need not have a corresponding
‘‘right something’’. If the right part is omitted,
put braces around the thing you want the left
bracket to encompass. Otherwise, the resulting
brackets may be too large.

If you want to omit the left part, things are
more complicated, because technically you can’t
have a right without a corresponding left.
Instead you have to say

left "" right)

for example. The left "" means a ‘‘left noth-
ing’’. This satisfies the rules without hurting
your output.

17. Piles

There is a general facility for making vert-
ical piles of things; it comes in several flavors.
For example:

A ˜=˜ left [
pile { a above b above c }
˜˜ pile { x above y above z }

right]

will make

A =


 c
b
a

z
y
x 




The elements of the pile (there can be as many
as you want) are centered one above another, at
the right height for most purposes. The key-
word above is used to separate the pieces; braces
are used around the entire list. The elements of
a pile can be as complicated as needed, even
containing more piles.

Three other forms of pile exist: lpile
makes a pile with the elements left-justified;
rpile makes a right-justified pile; and cpile
makes a centered pile, just like pile. The verti-
cal spacing between the pieces is somewhat
larger for l-, r- and cpiles than it is for ordinary
piles.

roman sign (x)˜=˜
left {

lpile {1 above 0 above −1}
˜˜ lpile
{if˜x>0 above if˜x=0 above if˜x<0}

makes

sign(x) =





−1
0
1

if x <0
if x =0
if x >0

Notice the left brace without a matching right
one.

18. Matrices

It is also possible to make matrices. For
example, to make a neat array like

yi

xi

y 2

x 2

you have to type

matrix {
ccol { x sub i above y sub i }
ccol { x sup 2 above y sup 2 }

}

This produces a matrix with two centered
columns. The elements of the columns are then
listed just as for a pile, each element separated

- 7 -

by the word above. You can also use lcol or
rcol to left or right adjust columns. Each
column can be separately adjusted, and there can
be as many columns as you like.

The reason for using a matrix instead of
two adjacent piles, by the way, is that if the ele-
ments of the piles don’t all have the same
height, they won’t line up properly. A matrix
forces them to line up, because it looks at the
entire structure before deciding what spacing to
use.

A word of warning about matrices — each
column must have the same number of elements
in it. The world will end if you get this wrong.

19. Shorthand for In-line Equations

In a mathematical document, it is neces-
sary to follow mathematical conventions not just
in display equations, but also in the body of the
text, for example by making variable names like
x italic. Although this could be done by sur-
rounding the appropriate parts with .EQ and .EN,
the continual repetition of .EQ and .EN is a nui-
sance. Furthermore, with ‘−ms’, .EQ and .EN

imply a displayed equation.

EQN provides a shorthand for short in-line
expressions. You can define two characters to
mark the left and right ends of an in-line equa-
tion, and then type expressions right in the mid-
dle of text lines. To set both the left and right
characters to dollar signs, for example, add to
the beginning of your document the three lines

.EQ
delim $$
.EN

Having done this, you can then say things like

Let $alpha sub i$ be the primary
variable, and let $beta$ be zero. Then
we can show that $x sub 1$ is $>=0$.

This works as you might expect — spaces, new-
lines, and so on are significant in the text, but
not in the equation part itself. Multiple equa-
tions can occur in a single input line.

Enough room is left before and after a line
that contains in-line expressions that something

like
i =1
Σ
n

xi does not interfere with the lines sur-

rounding it.

To turn off the delimiters,

.EQ
delim off
.EN

Warning: don’t use braces, tildes, circumflexes,
or double quotes as delimiters — chaos will
result.

20. Definitions

EQN provides a facility so you can give a
frequently-used string of characters a name, and
thereafter just type the name instead of the
whole string. For example, if the sequence

x sub i sub 1 + y sub i sub 1

appears repeatedly throughout a paper, you can
save re-typing it each time by defining it like
this:

define xy ′x sub i sub 1 + y sub i sub 1′

This makes xy a shorthand for whatever charac-
ters occur between the single quotes in the
definition. You can use any character instead of
quote to mark the ends of the definition, so long
as it doesn’t appear inside the definition.

Now you can use xy like this:

.EQ
f(x) = xy ...
.EN

and so on. Each occurrence of xy will expand
into what it was defined as. Be careful to leave
spaces or their equivalent around the name when
you actually use it, so EQN will be able to iden-
tify it as special.

There are several things to watch out for.
First, although definitions can use previous
definitions, as in

.EQ
define xi ′ x sub i ′
define xi1 ′ xi sub 1 ′
.EN

don’t define something in terms of itself’ A
favorite error is to say

define X ′ roman X ′

This is a guaranteed disaster, since X is now
defined in terms of itself. If you say

define X ′ roman "X" ′

however, the quotes protect the second X, and
everything works fine.

- 8 -

EQN keywords can be redefined. You can
make / mean over by saying

define / ′ over ′

or redefine over as / with

define over ′ / ′

If you need different things to print on a
terminal and on the typesetter, it is sometimes
worth defining a symbol differently in NEQN and
EQN. This can be done with ndefine and tdefine.
A definition made with ndefine only takes effect
if you are running NEQN; if you use tdefine, the
definition only applies for EQN. Names defined
with plain define apply to both EQN and NEQN.

21. Local Motions

Although EQN tries to get most things at
the right place on the paper, it isn’t perfect, and
occasionally you will need to tune the output to
make it just right. Small extra horizontal spaces
can be obtained with tilde and circumflex. You
can also say back n and fwd n to move small
amounts horizontally. n is how far to move in
1/100’s of an em (an em is about the width of
the letter ‘m’.) Thus back 50 moves back about
half the width of an m. Similarly you can move
things up or down with up n and down n. As
with sub or sup, the local motions affect the
next thing in the input, and this can be some-
thing arbitrarily complicated if it is enclosed in
braces.

22. A Large Example

Here is the complete source for the three
display equations in the abstract of this guide.

.EQ I
G(z)˜mark =˜ e sup { ln ˜ G(z) }
˜=˜ exp left (
sum from k>=1 {S sub k z sup k} over k right)
˜=˜ prod from k>=1 e sup {S sub k z sup k /k}
.EN
.EQ I
lineup = left (1 + S sub 1 z +
{ S sub 1 sup 2 z sup 2 } over 2! + ... right)
left (1+ { S sub 2 z sup 2 } over 2
+ { S sub 2 sup 2 z sup 4 } over { 2 sup 2 cdot 2! }
+ ... right) ...
.EN
.EQ I
lineup = sum from m>=0 left (
sum from
pile { k sub 1 ,k sub 2 ,..., k sub m >=0
above
k sub 1 +2k sub 2 + ... +mk sub m =m}
{ S sub 1 sup {k sub 1} } over {1 sup k sub 1 k sub 1 ! } ˜

{ S sub 2 sup {k sub 2} } over {2 sup k sub 2 k sub 2 ! } ˜
...
{ S sub m sup {k sub m} } over {m sup k sub m k sub m ! }
right) z sup m
.EN

23. Keywords, Precedences, Etc.

If you don’t use braces, EQN will do
operations in the order shown in this list.

dyad vec under bar tilde hat dot dotdot
fwd back down up
fat roman italic bold size
sub sup sqrt over
from to

These operations group to the left:

over sqrt left right

All others group to the right.

Digits, parentheses, brackets, punctuation
marks, and these mathematical words are con-
verted to Roman font when encountered:

sin cos tan sinh cosh tanh arc
max min lim log ln exp
Re Im and if for det

These character sequences are recognized and
translated as shown.

>= ≥
<= ≤
== ≡
!= ≠
+− ±
−> →
<− ←
<< < <
>> > >
inf ∞
partial ∂
half 1⁄2
prime ′
approx ∼∼
nothing
cdot .

times ×
del ∇
grad ∇
... . . .

,..., , . . . ,
sum Σ
int ∫
prod Π

- 9 -

union ∪
inter ∩

To obtain Greek letters, simply spell them
out in whatever case you want:

DELTA ∆ iota ι
GAMMA Γ kappa κ
LAMBDA Λ lambda λ
OMEGA Ω mu µ
PHI Φ nu ν
PI Π omega ω
PSI Ψ omicron ο
SIGMA Σ phi φ
THETA Θ pi π
UPSILON Υ psi ψ
XI Ξ rho ρ
alpha α sigma σ
beta β tau τ
chi χ theta θ
delta δ upsilon υ
epsilon ε xi ξ
eta η zeta ζ
gamma γ

These are all the words known to EQN

(except for characters with names), together with
the section where they are discussed.

above 17, 18 lpile 17
back 21 mark 15
bar 13 matrix 18
bold 12 ndefine 20
ccol 18 over 9
col 18 pile 17
cpile 17 rcol 18
define 20 right 16
delim 19 roman 12
dot 13 rpile 17
dotdot 13 size 12
down 21 sqrt 10
dyad 13 sub 7
fat 12 sup 7
font 12 tdefine 20
from 11 tilde 13
fwd 21 to 11
gfont 12 under 13
gsize 12 up 21
hat 13 vec 13
italic 12 ˜, ˆ 4, 6
lcol 18 { } 8
left 16 "..." 8, 14
lineup 15

24. Troubleshooting

If you make a mistake in an equation, like
leaving out a brace (very common) or having
one too many (very common) or having a sup
with nothing before it (common), EQN will tell
you with the message

syntax error between lines x and y, file z

where x and y are approximately the lines
between which the trouble occurred, and z is the
name of the file in question. The line numbers
are approximate — look nearby as well. There
are also self-explanatory messages that arise if
you leave out a quote or try to run EQN on a
non-existent file.

If you want to check a document before
actually printing it (on UNIX only),

eqn files >/dev/null

will throw away the output but print the mes-
sages.

If you use something like dollar signs as
delimiters, it is easy to leave one out. This
causes very strange troubles. The program
checkeq (on GCOS, use ./checkeq instead) checks
for misplaced or missing dollar signs and similar
troubles.

In-line equations can only be so big
because of an internal buffer in TROFF. If you
get a message ‘‘word overflow’’, you have
exceeded this limit. If you print the equation as
a displayed equation this message will usually
go away. The message ‘‘line overflow’’ indi-
cates you have exceeded an even bigger buffer.
The only cure for this is to break the equation
into two separate ones.

On a related topic, EQN does not break
equations by itself — you must split long equa-
tions up across multiple lines by yourself, mark-
ing each by a separate .EQEN sequence. EQN

does warn about equations that are too long to
fit on one line.

25. Use on UNIX

To print a document that contains
mathematics on the UNIX typesetter,

eqn files  troff

If there are any TROFF options, they go after the
TROFF part of the command. For example,

eqn files  troff −ms

To run the same document on the GCOS

- 10 -

typesetter, use

eqn files  troff −g (other options)  gcat

A compatible version of EQN can be used
on devices like teletypes and DASI and GSI termi-
nals which have half-line forward and reverse
capabilities. To print equations on a Model 37
teletype, for example, use

neqn files  nroff

The language for equations recognized by NEQN

is identical to that of EQN, although of course
the output is more restricted.

To use a GSI or DASI terminal as the out-
put device,

neqn files  nroff −Tx

where x is the terminal type you are using, such
as 300 or 300S.

EQN and NEQN can be used with the TBL

program[2] for setting tables that contain
mathematics. Use TBL before [N]EQN, like this:

tbl files  eqn  troff
tbl files  neqn  nroff

26. Acknowledgments

We are deeply indebted to J. F. Ossanna,
the author of TROFF, for his willingness to
extend TROFF to make our task easier, and for
his continuous assistance during the develop-
ment and evolution of EQN. We are also grate-
ful to A. V. Aho for advice on language design,
to S. C. Johnson for assistance with the YACC

compiler-compiler, and to all the EQN users who
have made helpful suggestions and criticisms.

References

[1] J. F. Ossanna, ‘‘NROFF/TROFF User’s
Manual’’, Bell Laboratories Computing
Science Technical Report #54, 1976.

[2] M. E. Lesk, ‘‘Typing Documents on
UNIX’’, Bell Laboratories, 1976.

[3] M. E. Lesk, ‘‘TBL — A Program for Set-
ting Tables’’, Bell Laboratories Comput-
ing Science Technical Report #49, 1976.

Tbl — A Program to Format Tables

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Tbl is a document formatting preprocessor for troff or nroff which makes even
fairly complex tables easy to specify and enter. It is available on the PDP-11 UNIX* sys-
tem and on Honeywell 6000 GCOS. Tables are made up of columns which may be
independently centered, right-adjusted, left-adjusted, or aligned by decimal points.
Headings may be placed over single columns or groups of columns. A table entry may
contain equations, or may consist of several rows of text. Horizontal or vertical lines
may be drawn as desired in the table, and any table or element may be enclosed in a
box. For example:

_ _______________________________________
1970 Federal Budget Transfers

(in billions of dollars)_ __ _______________________________________
Taxes Money

State
collected spent

Net
_ _______________________________________
New York 22.91 21.35 – 1.56
New Jersey 8.33 6.96 – 1.37
Connecticut 4.12 3.10 – 1.02
Maine 0.74 0.67 – 0.07
California 22.29 22.42 +0.13
New Mexico 0.70 1.49 +0.79
Georgia 3.30 4.28 +0.98
Mississippi 1.15 2.32 +1.17
Texas 9.33 11.13 +1.80_ _______________________________________ 












































































January 16, 1979

_ ______________
* UNIX is a Trademark/Service Mark of the Bell System

Tbl — A Program to Format Tables

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction.

Tbl turns a simple description of a table into a troff or nroff [1] program (list of commands) that
prints the table. Tbl may be used on the PDP-11 UNIX [2] system and on the Honeywell 6000 GCOS sys-
tem. It attempts to isolate a portion of a job that it can successfully handle and leave the remainder for
other programs. Thus tbl may be used with the equation formatting program eqn [3] or various layout
macro packages [4,5,6], but does not duplicate their functions.

This memorandum is divided into two parts. First we give the rules for preparing tbl input; then
some examples are shown. The description of rules is precise but technical, and the beginning user may
prefer to read the examples first, as they show some common table arrangements. A section explaining
how to invoke tbl precedes the examples. To avoid repetition, henceforth read troff as ‘‘troff or nroff.’’

The input to tbl is text for a document, with tables preceded by a ‘‘.TS’’ (table start) command
and followed by a ‘‘.TE’’ (table end) command. Tbl processes the tables, generating troff formatting
commands, and leaves the remainder of the text unchanged. The ‘‘.TS’’ and ‘‘.TE’’ lines are copied,
too, so that troff page layout macros (such as the memo formatting macros [4]) can use these lines to
delimit and place tables as they see fit. In particular, any arguments on the ‘‘.TS’’ or ‘‘.TE’’ lines are
copied but otherwise ignored, and may be used by document layout macro commands.

The format of the input is as follows:

text
.TS
table
.TE
text
.TS
table
.TE
text
. . .

where the format of each table is as follows:

.TS
options ;
format .
data
.TE

Each table is independent, and must contain formatting information followed by the data to be entered in
the table. The formatting information, which describes the individual columns and rows of the table,
may be preceded by a few options that affect the entire table. A detailed description of tables is given
in the next section.

- 2 -

Input commands.

As indicated above, a table contains, first, global options, then a format section describing the lay-
out of the table entries, and then the data to be printed. The format and data are always required, but
not the options. The various parts of the table are entered as follows:

1) OPTIONS. There may be a single line of options affecting the whole table. If present, this line
must follow the .TS line immediately and must contain a list of option names separated by
spaces, tabs, or commas, and must be terminated by a semicolon. The allowable options are:

center — center the table (default is left-adjust);

expand — make the table as wide as the current line length;

box — enclose the table in a box;

allbox — enclose each item in the table in a box;

doublebox — enclose the table in two boxes;

tab (x) — use x instead of tab to separate data items.

linesize (n) — set lines or rules (e.g. from box) in n point type;

delim (xy) — recognize x and y as the eqn delimiters.

The tbl program tries to keep boxed tables on one page by issuing appropriate ‘‘need’’ (.ne) com-
mands. These requests are calculated from the number of lines in the tables, and if there are spac-
ing commands embedded in the input, these requests may be inaccurate; use normal troff pro-
cedures, such as keep-release macros, in that case. The user who must have a multi-page boxed
table should use macros designed for this purpose, as explained below under ‘Usage.’

2) FORMAT. The format section of the table specifies the layout of the columns. Each line in this
section corresponds to one line of the table (except that the last line corresponds to all following
lines up to the next .T&, if any — see below), and each line contains a key-letter for each column
of the table. It is good practice to separate the key letters for each column by spaces or tabs.
Each key-letter is one of the following:

L or l to indicate a left-adjusted column entry;

R or r to indicate a right-adjusted column entry;

C or c to indicate a centered column entry;

N or n to indicate a numerical column entry, to be aligned with other numerical entries so
that the units digits of numbers line up;

A or a to indicate an alphabetic subcolumn; all corresponding entries are aligned on the left,
and positioned so that the widest is centered within the column (see example on page
12);

S or s to indicate a spanned heading, i.e. to indicate that the entry from the previous column
continues across this column (not allowed for the first column, obviously); or

ˆ to indicate a vertically spanned heading, i.e. to indicate that the entry from the previ-
ous row continues down through this row. (Not allowed for the first row of the table,
obviously).

When numerical alignment is specified, a location for the decimal point is sought. The rightmost
dot (.) adjacent to a digit is used as a decimal point; if there is no dot adjoining a digit, the right-
most digit is used as a units digit; if no alignment is indicated, the item is centered in the column.
However, the special non-printing character string \& may be used to override unconditionally dots
and digits, or to align alphabetic data; this string lines up where a dot normally would, and then
disappears from the final output. In the example below, the items shown at the left will be
aligned (in a numerical column) as shown on the right:

- 3 -

13 13
4.2 4.2
26.4.12 26.4.12
abc abc
abc\& abc
43\&3.22 433.22
749.12 749.12

Note: If numerical data are used in the same column with wider L or r type table entries, the
widest number is centered relative to the wider L or r items (L is used instead of l for readability;
they have the same meaning as key-letters). Alignment within the numerical items is preserved.
This is similar to the behavior of a type data, as explained above. However, alphabetic sub-
columns (requested by the a key-letter) are always slightly indented relative to L items; if neces-
sary, the column width is increased to force this. This is not true for n type entries.

Warning: the n and a items should not be used in the same column.

For readability, the key-letters describing each column should be separated by spaces. The end of
the format section is indicated by a period. The layout of the key-letters in the format section
resembles the layout of the actual data in the table. Thus a simple format might appear as:

c s s
l n n .

which specifies a table of three columns. The first line of the table contains a heading centered
across all three columns; each remaining line contains a left-adjusted item in the first column fol-
lowed by two columns of numerical data. A sample table in this format might be:

Overall title
Item-a 34.22 9.1
Item-b 12.65 .02
Items: c,d,e 23 5.8
Total 69.87 14.92

There are some additional features of the key-letter system:

Horizontal lines — A key-letter may be replaced by ‘_’ (underscore) to indicate a horizontal line
in place of the corresponding column entry, or by ‘=’ to indicate a double horizontal line. If
an adjacent column contains a horizontal line, or if there are vertical lines adjoining this
column, this horizontal line is extended to meet the nearby lines. If any data entry is pro-
vided for this column, it is ignored and a warning message is printed.

Vertical lines — A vertical bar may be placed between column key-letters. This will cause a
vertical line between the corresponding columns of the table. A vertical bar to the left of
the first key-letter or to the right of the last one produces a line at the edge of the table. If
two vertical bars appear between key-letters, a double vertical line is drawn.

Space between columns — A number may follow the key-letter. This indicates the amount of
separation between this column and the next column. The number normally specifies the
separation in ens (one en is about the width of the letter ‘n’).* If the ‘‘expand’’ option is
used, then these numbers are multiplied by a constant such that the table is as wide as the
current line length. The default column separation number is 3. If the separation is
changed the worst case (largest space requested) governs.

Vertical spanning — Normally, vertically spanned items extending over several rows of the table
are centered in their vertical range. If a key-letter is followed by t or T, any corresponding
vertically spanned item will begin at the top line of its range.

* More precisely, an en is a number of points (1 point = 1/72 inch) equal to half the current type size.

- 4 -

Font changes — A key-letter may be followed by a string containing a font name or number
preceded by the letter f or F. This indicates that the corresponding column should be in a
different font from the default font (usually Roman). All font names are one or two letters;
a one-letter font name should be separated from whatever follows by a space or tab. The
single letters B, b, I, and i are shorter synonyms for f B and f I. Font change commands
given with the table entries override these specifications.

Point size changes — A key-letter may be followed by the letter p or P and a number to indi-
cate the point size of the corresponding table entries. The number may be a signed digit, in
which case it is taken as an increment or decrement from the current point size. If both a
point size and a column separation value are given, one or more blanks must separate them.

Vertical spacing changes — A key-letter may be followed by the letter v or V and a number to
indicate the vertical line spacing to be used within a multi-line corresponding table entry.
The number may be a signed digit, in which case it is taken as an increment or decrement
from the current vertical spacing. A column separation value must be separated by blanks
or some other specification from a vertical spacing request. This request has no effect
unless the corresponding table entry is a text block (see below).

Column width indication — A key-letter may be followed by the letter w or W and a width
value in parentheses. This width is used as a minimum column width. If the largest ele-
ment in the column is not as wide as the width value given after the w, the largest element
is assumed to be that wide. If the largest element in the column is wider than the specified
value, its width is used. The width is also used as a default line length for included text
blocks. Normal troff units can be used to scale the width value; if none are used, the
default is ens. If the width specification is a unitless integer the parentheses may be omit-
ted. If the width value is changed in a column, the last one given controls.

Equal width columns — A key-letter may be followed by the letter e or E to indicate equal
width columns. All columns whose key-letters are followed by e or E are made the same
width. This permits the user to get a group of regularly spaced columns.

Note: The order of the above features is immaterial; they need not be separated by spaces,
except as indicated above to avoid ambiguities involving point size and font changes. Thus
a numerical column entry in italic font and 12 point type with a minimum width of 2.5
inches and separated by 6 ens from the next column could be specified as

np12w(2.5i)f I 6

Alternative notation — Instead of listing the format of successive lines of a table on consecutive
lines of the format section, successive line formats may be given on the same line, separated
by commas, so that the format for the example above might have been written:

c s s, l n n .
Default — Column descriptors missing from the end of a format line are assumed to be L. The

longest line in the format section, however, defines the number of columns in the table;
extra columns in the data are ignored silently.

3) DATA. The data for the table are typed after the format. Normally, each table line is typed as one
line of data. Very long input lines can be broken: any line whose last character is \ is combined
with the following line (and the \ vanishes). The data for different columns (the table entries) are
separated by tabs, or by whatever character has been specified in the option tabs option. There
are a few special cases:

Troff commands within tables — An input line beginning with a ‘.’ followed by anything but a
number is assumed to be a command to troff and is passed through unchanged, retaining its
position in the table. So, for example, space within a table may be produced by ‘‘.sp’’
commands in the data.

- 5 -

Full width horizontal lines — An input line containing only the character _ _ (underscore) or =
(equal sign) is taken to be a single or double line, respectively, extending the full width of
the table.

Single column horizontal lines — An input table entry containing only the character _ _ or = is
taken to be a single or double line extending the full width of the column. Such lines are
extended to meet horizontal or vertical lines adjoining this column. To obtain these charac-
ters explicitly in a column, either precede them by \& or follow them by a space before the
usual tab or newline.

Short horizontal lines — An input table entry containing only the string __ is taken to be a sin-
gle line as wide as the contents of the column. It is not extended to meet adjoining lines.

Repeated characters — An input table entry containing only a string of the form \ \Rx where x is
any character is replaced by repetitions of the character x as wide as the data in the column.
The sequence of x ’s is not extended to meet adjoining columns.

Vertically spanned items — An input table entry containing only the character string \ˆ indicates
that the table entry immediately above spans downward over this row. It is equivalent to a
table format key-letter of ‘ˆ’.

Text blocks — In order to include a block of text as a table entry, precede it by T{T{ and follow it
by T}T}. Thus the sequence

. . . T{T{
block of
text
T}T} . . .

is the way to enter, as a single entry in the table, something that cannot conveniently be
typed as a simple string between tabs. Note that the T}T} end delimiter must begin a line;
additional columns of data may follow after a tab on the same line. See the example on
page 10 for an illustration of included text blocks in a table. If more than twenty or thirty
text blocks are used in a table, various limits in the troff program are likely to be exceeded,
producing diagnostics such as ‘too many string/macro names’ or ‘too many number regis-
ters.’

Text blocks are pulled out from the table, processed separately by troff, and replaced in the
table as a solid block. If no line length is specified in the block of text itself, or in the table
format, the default is to use L ×C ⁄(N +1) where L is the current line length, C is the number
of table columns spanned by the text, and N is the total number of columns in the table.
The other parameters (point size, font, etc.) used in setting the block of text are those in
effect at the beginning of the table (including the effect of the ‘‘.TS’’ macro) and any table
format specifications of size, spacing and font, using the p, v and f modifiers to the column
key-letters. Commands within the text block itself are also recognized, of course. However,
troff commands within the table data but not within the text block do not affect that block.

Warnings: — Although any number of lines may be present in a table, only the first 200 lines
are used in calculating the widths of the various columns. A multi-page table, of course,
may be arranged as several single-page tables if this proves to be a problem. Other
difficulties with formatting may arise because, in the calculation of column widths all table
entries are assumed to be in the font and size being used when the ‘‘.TS’’ command was
encountered, except for font and size changes indicated (a) in the table format section and
(b) within the table data (as in the entry \s+3\fIdata\fP\s0). Therefore, although arbitrary
troff requests may be sprinkled in a table, care must be taken to avoid confusing the width
calculations; use requests such as ‘.ps’ with care.

4) ADDITIONAL COMMAND LINES. If the format of a table must be changed after many similar lines,
as with sub-headings or summarizations, the ‘‘.T&’’ (table continue) command can be used to
change column parameters. The outline of such a table input is:

- 6 -

.TS
options ;
format .
data
. . .
.T&
format .
data
.T&
format .
data
.TE

as in the examples on pages 10 and 12. Using this procedure, each table line can be close to its
corresponding format line.

Warning: it is not possible to change the number of columns, the space between columns, the
global options such as box, or the selection of columns to be made equal width.

Usage.

On UNIX, tbl can be run on a simple table with the command

tbl input-file  troff

but for more complicated use, where there are several input files, and they contain equations and ms
memorandum layout commands as well as tables, the normal command would be

tbl file-1 file-2 . . .  eqn  troff – ms

and, of course, the usual options may be used on the troff and eqn commands. The usage for nroff is
similar to that for troff, but only TELETYPE Model 37 and Diablo-mechanism (DASI or GSI) terminals
can print boxed tables directly.

For the convenience of users employing line printers without adequate driving tables or post-
filters, there is a special – TX command line option to tbl which produces output that does not have
fractional line motions in it. The only other command line options recognized by tbl are – ms and
– mm which are turned into commands to fetch the corresponding macro files; usually it is more con-
venient to place these arguments on the troff part of the command line, but they are accepted by tbl as
well.

Note that when eqn and tbl are used together on the same file tbl should be used first. If there are
no equations within tables, either order works, but it is usually faster to run tbl first, since eqn normally
produces a larger expansion of the input than tbl. However, if there are equations within tables (using
the delim mechanism in eqn), tbl must be first or the output will be scrambled. Users must also beware
of using equations in n-style columns; this is nearly always wrong, since tbl attempts to split numerical
format items into two parts and this is not possible with equations. The user can defend against this by
giving the delim(xx) table option; this prevents splitting of numerical columns within the delimiters. For
example, if the eqn delimiters are $$, giving delim($$) a numerical column such as ‘‘1245 $+- 16$’’
will be divided after 1245, not after 16.

Tbl limits tables to twenty columns; however, use of more than 16 numerical columns may fail
because of limits in troff, producing the ‘too many number registers’ message. Troff number registers
used by tbl must be avoided by the user within tables; these include two-digit names from 31 to 99, and
names of the forms #x, x+, x  , ˆx, and x−, where x is any lower case letter. The names ##, #−, and #ˆ
are also used in certain circumstances. To conserve number register names, the n and a formats share a
register; hence the restriction above that they may not be used in the same column.

For aid in writing layout macros, tbl defines a number register TW which is the table width; it is
defined by the time that the ‘‘.TE’’ macro is invoked and may be used in the expansion of that macro.
More importantly, to assist in laying out multi-page boxed tables the macro T# is defined to produce the

- 7 -

bottom lines and side lines of a boxed table, and then invoked at its end. By use of this macro in the
page footer a multi-page table can be boxed. In particular, the ms macros can be used to print a multi-
page boxed table with a repeated heading by giving the argument H to the ‘‘.TS’’ macro. If the table
start macro is written

.TS H
a line of the form

.TH
must be given in the table after any table heading (or at the start if none). Material up to the ‘‘.TH’’ is
placed at the top of each page of table; the remaining lines in the table are placed on several pages as
required. Note that this is not a feature of tbl, but of the ms layout macros.

Examples.

Here are some examples illustrating features of tbl. The symbol T in the input represents a tab
character.

Input:

.TS
box;
c c c
l l l.
Language T Authors T Runs on

Fortran T Many T Almost anything
PL/1 T IBM T 360/370
C T BTL T 11/45,H6000,370
BLISS T Carnegie-Mellon T PDP-10,11
IDS T Honeywell T H6000
Pascal T Stanford T 370
.TE

Output:
_ ___
Language Authors Runs on

Fortran Many Almost anything
PL/1 IBM 360/370
C BTL 11/45,H6000,370
BLISS Carnegie-Mellon PDP-10,11
IDS Honeywell H6000
Pascal Stanford 370_ ___ 






















Input:

.TS
allbox;
c s s
c c c
n n n.
AT&T Common Stock
Year T Price T Dividend
1971 T 41-54 T $2.60
2 T 41-54 T 2.70
3 T 46-55 T 2.87
4 T 40-53 T 3.24
5 T 45-52 T 3.40
6 T 51-59 T .95*
.TE
* (first quarter only)

Output:
_ ________________________

AT&T Common Stock_ ________________________
Year Price Dividend_ ________________________
1971 41-54 $2.60_ ________________________

2 41-54 2.70_ ________________________
3 46-55 2.87_ ________________________
4 40-53 3.24_ ________________________
5 45-52 3.40_ ________________________
6 51-59 .95*_ ________________________ 














































* (first quarter only)

- 8 -

Input:

.TS
box;
c s s
c  c  c
l  l  n.
Major New York Bridges
=
Bridge T Designer T Length
_
Brooklyn T J. A. Roebling T 1595
Manhattan T G. Lindenthal T 1470
Williamsburg T L. L. Buck T 1600
_
Queensborough T Palmer & T 1182

T Hornbostel
_

T T 1380
Triborough T O. H. Ammann T _

T T 383
_
Bronx Whitestone T O. H. Ammann T 2300
Throgs Neck T O. H. Ammann T 1800
_
George Washington T O. H. Ammann T 3500
.TE

Output:
_ __

Major New York Bridges_ ___ __
Bridge Designer Length_ __

Brooklyn J. A. Roebling 1595
Manhattan G. Lindenthal 1470
Williamsburg L. L. Buck 1600_ __
Queensborough Palmer & 1182

Hornbostel_ __
1380

Triborough O. H. Ammann _ ________

383_ __
Bronx Whitestone O. H. Ammann 2300
Throgs Neck O. H. Ammann 1800_ __
George Washington O. H. Ammann 3500_ __ 




































































Input:

.TS
c c
np-2  n  .

T Stack
T _

1 T 46
T _

2 T 23
T _

3 T 15
T _

4 T 6.5
T _

5 T 2.1
T _
.TE

Output:

Stack_ _______
1 46_ _______
2 23_ _______
3 15_ _______
4 6.5_ _______
5 2.1_ _______ 
















- 9 -

Input:

.TS
box;
L L L
L L _
L L  LB
L L _
L L L.
january T february T march
april T may
june T july T Months
august T september
october T november T december
.TE

Output:
_ _____________________________
january february march
april may _ __________

june july



Months
august september _ __________

october november december_ _____________________________ 













Input:

.TS
box;
cfB s s s.
Composition of Foods
_
.T&
c  c s s
c  c s s
c  c  c  c.
Food T Percent by Weight
\ˆ T _
\ˆ T Protein T Fat T Carbo-
\ˆ T \ˆ T \ˆ T hydrate
_
.T&
l  n  n  n.
Apples T .4 T .5 T 13.0
Halibut T 18.4 T 5.2 T . . .
Lima beans T 7.5 T .8 T 22.0
Milk T 3.3 T 4.0 T 5.0
Mushrooms T 3.5 T .4 T 6.0
Rye bread T 9.0 T .6 T 52.7
.TE

Output:
_ __________________________________

Composition of Foods_ __________________________________
Percent by Weight_ ______________________

Carbo-Food
Protein Fat

hydrate_ __________________________________
Apples .4 .5 13.0
Halibut 18.4 5.2 ...
Lima beans 7.5 .8 22.0
Milk 3.3 4.0 5.0
Mushrooms 3.5 .4 6.0
Rye bread 9.0 .6 52.7_ __________________________________ 






























































- 10 -

Input:

.TS
allbox;
cfI s s
c cw(1i) cw(1i)
lp9 lp9 lp9.
New York Area Rocks
Era T Formation T Age (years)
Precambrian T Reading Prong T >1 billion
Paleozoic T Manhattan Prong T 400 million
Mesozoic T T{
.na
Newark Basin, incl.
Stockton, Lockatong, and Brunswick
formations; also Watchungs
and Palisades.
T} T 200 million
Cenozoic T Coastal Plain T T{
On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation.
.ad
T}
.TE

Output:
_ ___

New York Area Rocks_ ___
Era Formation Age (years)_ ___

Precambrian Reading Prong >1 billion_ ___
Paleozoic Manhattan Prong 400 million_ ___
Mesozoic 200 million Newark Basin,

incl. Stockton,
Lockatong, and
Brunswick forma-
tions; also
Watchungs and
Palisades._ ___

Cenozoic Coastal Plain On Long Island
30,000 years; Cre-
taceous sediments
redeposited by
recent glaciation._ ___ 














































































Input:

.EQ
delim $$
.EN

. . .

.TS
doublebox;
c c
l l.
Name T Definition
.sp
.vs +2p
Gamma T $GAMMA (z) = int sub 0 sup inf t sup {z-1} e sup -t dt$
Sine T $sin (x) = 1 over 2i (e sup ix - e sup -ix)$
Error T $ roman erf (z) = 2 over sqrt pi int sub 0 sup z e sup {-t sup 2} dt$
Bessel T $ J sub 0 (z) = 1 over pi int sub 0 sup pi cos (z sin theta) d theta $
Zeta T $ zeta (s) = sum from k=1 to inf k sup -s ˜˜(Re˜s > 1)$
.vs -2p
.TE

Output:
_ _________________________________ _______________________________

Name Definition

Gamma Γ(z)=∫
0

∞
t z −1e−t dt

Sine sin(x)=
2i
1_ __(e ix −e−ix)

Error erf(z)=
√π
2_ __∫

0

z
e−t 2

dt

Bessel J 0(z)=
π
1_ _∫

0

π
cos(z sinθ)d θ

Zeta ζ(s)=
k =1
Σ
∞

k−s (Re s >1)
_ ________________________________ ________________________________ 

























































- 11 -

Input:

.TS
box, tab(:);
cb s s s s
cp-2 s s s s
c   c  c  c  c
c   c  c  c  c
r2   n2  n2  n2  n.
Readability of Text
Line Width and Leading for 10-Point Type
=
Line : Set : 1-Point : 2-Point : 4-Point
Width : Solid : Leading : Leading : Leading
_
9 Pica : \-9.3 : \-6.0 : \-5.3 : \-7.1
14 Pica : \-4.5 : \-0.6 : \-0.3 : \-1.7
19 Pica : \-5.0 : \-5.1 : 0.0 : \-2.0
31 Pica : \-3.7 : \-3.8 : \-2.4 : \-3.6
43 Pica : \-9.1 : \-9.0 : \-5.9 : \-8.8
.TE

Output:
__

Readability of Text
Line Width and Leading for 10-Point Type__

Line Set 1-Point 2-Point 4-Point
Width Solid Leading Leading Leading__
9 Pica – 9.3 – 6.0 – 5.3 – 7.1

14 Pica – 4.5 – 0.6 – 0.3 – 1.7
19 Pica – 5.0 – 5.1 0.0 – 2.0
31 Pica – 3.7 – 3.8 – 2.4 – 3.6
43 Pica – 9.1 – 9.0 – 5.9 – 8.8__ 










































































- 12 -

Input:

.TS
c s
cip-2 s
l n
a n.
Some London Transport Statistics
(Year 1964)
Railway route miles T 244
Tube T 66
Sub-surface T 22
Surface T 156
.sp .5
.T&
l r
a r.
Passenger traffic \- railway
Journeys T 674 million
Average length T 4.55 miles
Passenger miles T 3,066 million
.T&
l r
a r.
Passenger traffic \- road
Journeys T 2,252 million
Average length T 2.26 miles
Passenger miles T 5,094 million
.T&
l n
a n.
.sp .5
Vehicles T 12,521
Railway motor cars T 2,905
Railway trailer cars T 1,269
Total railway T 4,174
Omnibuses T 8,347
.T&
l n
a n.
.sp .5
Staff T 73,739
Administrative, etc. T 5,582
Civil engineering T 5,134
Electrical eng. T 1,714
Mech. eng. \- railway T 4,310
Mech. eng. \- road T 9,152
Railway operations T 8,930
Road operations T 35,946
Other T 2,971
.TE

Output:

Some London Transport Statistics
(Year 1964)

Railway route miles 244
Tube 66
Sub-surface 22
Surface 156

Passenger traffic − railway
Journeys 674 million
Average length 4.55 miles
Passenger miles 3,066 million

Passenger traffic − road
Journeys 2,252 million
Average length 2.26 miles
Passenger miles 5,094 million

Vehicles 12,521
Railway motor cars 2,905
Railway trailer cars 1,269
Total railway 4,174
Omnibuses 8,347

Staff 73,739
Administrative, etc. 5,582
Civil engineering 5,134
Electrical eng. 1,714
Mech. eng. − railway 4,310
Mech. eng. − road 9,152
Railway operations 8,930
Road operations 35,946
Other 2,971

- 13 -

Input:

.ps 8

.vs 10p

.TS
center box;
c s s
ci s s
c c c
lB l n.
New Jersey Representatives
(Democrats)
.sp .5
Name T Office address T Phone
.sp .5
James J. Florio T 23 S. White Horse Pike, Somerdale 08083 T 609-627-8222
William J. Hughes T 2920 Atlantic Ave., Atlantic City 08401 T 609-345-4844
James J. Howard T 801 Bangs Ave., Asbury Park 07712 T 201-774-1600
Frank Thompson, Jr. T 10 Rutgers Pl., Trenton 08618 T 609-599-1619
Andrew Maguire T 115 W. Passaic St., Rochelle Park 07662 T 201-843-0240
Robert A. Roe T U.S.P.O., 194 Ward St., Paterson 07510 T 201-523-5152
Henry Helstoski T 666 Paterson Ave., East Rutherford 07073 T 201-939-9090
Peter W. Rodino, Jr. T Suite 1435A, 970 Broad St., Newark 07102 T 201-645-3213
Joseph G. Minish T 308 Main St., Orange 07050 T 201-645-6363
Helen S. Meyner T 32 Bridge St., Lambertville 08530 T 609-397-1830
Dominick V. Daniels T 895 Bergen Ave., Jersey City 07306 T 201-659-7700
Edward J. Patten T Natl. Bank Bldg., Perth Amboy 08861 T 201-826-4610
.sp .5
.T&
ci s s
lB l n.
(Republicans)
.sp .5v
Millicent Fenwick T 41 N. Bridge St., Somerville 08876 T 201-722-8200
Edwin B. Forsythe T 301 Mill St., Moorestown 08057 T 609-235-6622
Matthew J. Rinaldo T 1961 Morris Ave., Union 07083 T 201-687-4235
.TE
.ps 10
.vs 12p

- 14 -

Output:
_ ___

New Jersey Representatives
(Democrats)

Name Office address Phone

James J. Florio 23 S. White Horse Pike, Somerdale 08083 609-627-8222
William J. Hughes 2920 Atlantic Ave., Atlantic City 08401 609-345-4844
James J. Howard 801 Bangs Ave., Asbury Park 07712 201-774-1600
Frank Thompson, Jr. 10 Rutgers Pl., Trenton 08618 609-599-1619
Andrew Maguire 115 W. Passaic St., Rochelle Park 07662 201-843-0240
Robert A. Roe U.S.P.O., 194 Ward St., Paterson 07510 201-523-5152
Henry Helstoski 666 Paterson Ave., East Rutherford 07073 201-939-9090
Peter W. Rodino, Jr. Suite 1435A, 970 Broad St., Newark 07102 201-645-3213
Joseph G. Minish 308 Main St., Orange 07050 201-645-6363
Helen S. Meyner 32 Bridge St., Lambertville 08530 609-397-1830
Dominick V. Daniels 895 Bergen Ave., Jersey City 07306 201-659-7700
Edward J. Patten Natl. Bank Bldg., Perth Amboy 08861 201-826-4610

(Republicans)

Millicent Fenwick 41 N. Bridge St., Somerville 08876 201-722-8200
Edwin B. Forsythe 301 Mill St., Moorestown 08057 609-235-6622
Matthew J. Rinaldo 1961 Morris Ave., Union 07083 201-687-4235_ ___ 






















































This is a paragraph of normal text placed here only to indicate where the left and right margins are. In
this way the reader can judge the appearance of centered tables or expanded tables, and observe how
such tables are formatted.

Input:

.TS
expand;
c s s s
c c c c
l l n n.
Bell Labs Locations
Name T Address T Area Code T Phone
Holmdel T Holmdel, N. J. 07733 T 201 T 949-3000
Murray Hill T Murray Hill, N. J. 07974 T 201 T 582-6377
Whippany T Whippany, N. J. 07981 T 201 T 386-3000
Indian Hill T Naperville, Illinois 60540 T 312 T 690-2000
.TE

Output:

Bell Labs Locations
Name Address Area Code Phone

Holmdel Holmdel, N. J. 07733 201 949-3000
Murray Hill Murray Hill, N. J. 07974 201 582-6377
Whippany Whippany, N. J. 07981 201 386-3000
Indian Hill Naperville, Illinois 60540 312 690-2000

- 15 -

Input:

.TS
box;
cb s s s
c  c  c s
ltiw(1i)  ltw(2i)  lp8  lw(1.6i)p8.
Some Interesting Places
_
Name T Description T Practical Information
_
T{
American Museum of Natural History
T} T T{
The collections fill 11.5 acres (Michelin) or 25 acres (MTA)
of exhibition halls on four floors. There is a full-sized replica
of a blue whale and the world’s largest star sapphire (stolen in 1964).
T} T Hours T 10-5, ex. Sun 11-5, Wed. to 9
\ˆ T \ˆ T Location T T{
Central Park West & 79th St.
T}
\ˆ T \ˆ T Admission T Donation: $1.00 asked
\ˆ T \ˆ T Subway T AA to 81st St.
\ˆ T \ˆ T Telephone T 212-873-4225
_
Bronx Zoo T T{
About a mile long and .6 mile wide, this is the largest zoo in America.
A lion eats 18 pounds
of meat a day while a sea lion eats 15 pounds of fish.
T} T Hours T T{
10-4:30 winter, to 5:00 summer
T}
\ˆ T \ˆ T Location T T{
185th St. & Southern Blvd, the Bronx.
T}
\ˆ T \ˆ T Admission T $1.00, but Tu,We,Th free
\ˆ T \ˆ T Subway T 2, 5 to East Tremont Ave.
\ˆ T \ˆ T Telephone T 212-933-1759
_
Brooklyn Museum T T{
Five floors of galleries contain American and ancient art.
There are American period rooms and architectural ornaments saved
from wreckers, such as a classical figure from Pennsylvania Station.
T} T Hours T Wed-Sat, 10-5, Sun 12-5
\ˆ T \ˆ T Location T T{
Eastern Parkway & Washington Ave., Brooklyn.
T}
\ˆ T \ˆ T Admission T Free
\ˆ T \ˆ T Subway T 2,3 to Eastern Parkway.
\ˆ T \ˆ T Telephone T 212-638-5000
_
T{
New-York Historical Society
T} T T{
All the original paintings for Audubon’s
.I
Birds of America
.R
are here, as are exhibits of American decorative arts, New York history,
Hudson River school paintings, carriages, and glass paperweights.
T} T Hours T T{
Tues-Fri & Sun, 1-5; Sat 10-5
T}
\ˆ T \ˆ T Location T T{
Central Park West & 77th St.
T}
\ˆ T \ˆ T Admission T Free
\ˆ T \ˆ T Subway T AA to 81st St.
\ˆ T \ˆ T Telephone T 212-873-3400
.TE

- 16 -

Output:
_ __

Some Interesting Places_ __
Name Description Practical Information_ __

Hours 10-5, ex. Sun 11-5, Wed. to 9

Location Central Park West & 79th St.

Admission Donation: $1.00 asked

Subway AA to 81st St.

Telephone 212-873-4225

American Muse-
um of Natural
History

The collections fill 11.5 acres
(Michelin) or 25 acres (MTA) of
exhibition halls on four floors.
There is a full-sized replica of a
blue whale and the world’s largest
star sapphire (stolen in 1964)._ __

Hours 10-4:30 winter, to 5:00 summer

Location 185th St. & Southern Blvd, the
Bronx.

Admission $1.00, but Tu,We,Th free

Subway 2, 5 to East Tremont Ave.

Bronx Zoo

Telephone 212-933-1759

About a mile long and .6 mile
wide, this is the largest zoo in
America. A lion eats 18 pounds
of meat a day while a sea lion eats
15 pounds of fish.

_ __
Hours Wed-Sat, 10-5, Sun 12-5

Location Eastern Parkway & Washington
Ave., Brooklyn.

Admission Free

Subway 2,3 to Eastern Parkway.

Brooklyn Museum

Telephone 212-638-5000

Five floors of galleries contain
American and ancient art. There
are American period rooms and ar-
chitectural ornaments saved from
wreckers, such as a classical figure
from Pennsylvania Station._ __

Hours Tues-Fri & Sun, 1-5; Sat 10-5

Location Central Park West & 77th St.

Admission Free

Subway AA to 81st St.

Telephone 212-873-3400

New-York Histor-
ical Society

All the original paintings for
Audubon’s Birds of America are
here, as are exhibits of American
decorative arts, New York history,
Hudson River school paintings,
carriages, and glass paperweights._ __ 
































































































































































Acknowledgments.

Many thanks are due to J. C. Blinn, who has done a large amount of testing and assisted with the
design of the program. He has also written many of the more intelligible sentences in this document
and helped edit all of it. All phototypesetting programs on UNIX are dependent on the work of the late J.
F. Ossanna, whose assistance with this program in particular had been most helpful. This program is
patterned on a table formatter originally written by J. F. Gimpel. The assistance of T. A. Dolotta, B. W.
Kernighan, and J. N. Sturman is gratefully acknowledged.

References.

[1] J. F. Ossanna, NROFF/TROFF User’s Manual, Computing Science Technical Report No. 54, Bell
Laboratories, 1976.

[2] K. Thompson and D. M. Ritchie, ‘‘The UNIX Time-Sharing System,’’ Comm. ACM. 17, pp.
365−75 (1974).

[3] B. W. Kernighan and L. L. Cherry, ‘‘A System for Typesetting Mathematics,’’ Comm. ACM. 18,
pp. 151−57 (1975).

[4] M. E. Lesk, Typing Documents on UNIX, UNIX Programmer’s Manual, Volume 2.

[5] M. E. Lesk and B. W. Kernighan, Computer Typesetting of Technical Journals on UNIX, Proc.
AFIPS NCC, vol. 46, pp. 879-888 (1977).

[6] J. R. Mashey and D. W. Smith, ‘‘Documentation Tools and Techniques,’’ Proc. 2nd Int. Conf. on
Software Engineering, pp. 177-181 (October, 1976).

- 17 -

List of Tbl Command Characters and Words

Command Meaning Section
a A Alphabetic subcolumn 2
allbox Draw box around all items 1
b B Boldface item 2
box Draw box around table 1
c C Centered column 2
center Center table in page 1
doublebox Doubled box around table 1
e E Equal width columns 2
expand Make table full line width 1
f F Font change 2
i I Italic item 2
l L Left adjusted column 2
n N Numerical column 2
nnn Column separation 2
p P Point size change 2
r R Right adjusted column 2
s S Spanned item 2
t T Vertical spanning at top 2
tab (x) Change data separator character 1
T{T{ T}T} Text block 3
v V Vertical spacing change 2
w W Minimum width value 2
.xx Included troff command 3
 Vertical line 2
  Double vertical line 2

ˆ Vertical span 2
\ˆ Vertical span 3
= Double horizontal line 2,3
_ _ Horizontal line 2,3
__ Short horizontal line 3
\ \Rx Repeat character 3

Bell Laboratories
Murray Hill, New Jersey 07974

Computing Science Technical Report No. 69

Some Applications of Inverted Indexes on the UNIX System

M. E. Lesk

June 21, 1978

Some Applications of Inverted Indexes on the UNIX System

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

I. Some Applications of Inverted Indexes – Overview

This memorandum describes a set of programs which make inverted indexes to
UNIX* text files, and their application to retrieving and formatting citations for docu-
ments prepared using troff.

These indexing and searching programs make keyword indexes to volumes of
material too large for linear searching. Searches for combinations of single words can
be performed quickly. The programs are divided into two phases. The first makes an
index from the original data; the second searches the index and retrieves items. Both
of these phases are further divided into two parts to separate the data-dependent and
algorithm dependent code.

The major current application of these programs is the troff preprocessor refer.
A list of 4300 references is maintained on line, containing primarily papers written and
cited by local authors. Whenever one of these references is required in a paper, a few
words from the title or author list will retrieve it, and the user need not bother to re-
enter the exact citation. Alternatively, authors can use their own lists of papers.

This memorandum is of interest to those who are interested in facilities for
searching large but relatively unchanging text files on the UNIX system, and those who
are interested in handling bibliographic citations with UNIX troff.

II. Updating Publication Lists

This section is a brief note describing the auxiliary programs for managing the
updating processing. It is written to aid clerical users in maintaining lists of refer-
ences. Primarily, the programs described permit a large amount of individual control
over the content of publication lists while retaining the usefulness of the files to other
users.

III. Manual Pages

This section contains the pages from the UNIX programmer’s manual for the
lookall, pubindex, and refer commands. It is useful for reference.

_ ___
* UNIX is a Trademark of Bell Laboratories.

June 21, 1978

Some Applications of Inverted Indexes on the UNIX System

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction.

The UNIX† system has many utilities (e.g. grep, awk, lex, egrep, fgrep, ...) to search through files
of text, but most of them are based on a linear scan through the entire file, using some deterministic
automaton. This memorandum discusses a program which uses inverted indexes1 and can thus be used
on much larger data bases.

As with any indexing system, of course, there are some disadvantages; once an index is made, the
files that have been indexed can not be changed without remaking the index. Thus applications are res-
tricted to those making many searches of relatively stable data. Furthermore, these programs depend on
hashing, and can only search for exact matches of whole keywords. It is not possible to look for arith-
metic or logical expressions (e.g. ‘‘date greater than 1970’’) or for regular expression searching such as
that in lex.2

Currently there are two uses of this software, the refer preprocessor to format references, and the
lookall command to search through all text files on the UNIX system.

The remaining sections of this memorandum discuss the searching programs and their uses. Sec-
tion 2 explains the operation of the searching algorithm and describes the data collected for use with the
lookall command. The more important application, refer has a user’s description in section 3. Section
4 goes into more detail on reference files for the benefit of those who wish to add references to data
bases or write new troff macros for use with refer. The options to make refer collect identical citations,
or otherwise relocate and adjust references, are described in section 5. The UNIX manual sections for
refer, lookall, and associated commands are attached as appendices.

2. Searching.

The indexing and searching process is divided into two phases, each made of two parts. These are
shown below.

A. Construct the index.

(1) Find keys — turn the input files into a sequence of tags and keys, where each tag identifies
a distinct item in the input and the keys for each such item are the strings under which it is
to be indexed.

(2) Hash and sort — prepare a set of inverted indexes from which, given a set of keys, the
appropriate item tags can be found quickly.

B. Retrieve an item in response to a query.

†UNIX is a Trademark of Bell Laboratories.

1. D. Knuth, The Art of Computer Programming: Vol. 3, Sorting and Searching, Addison-Wesley, Reading, Mass. (1977).
See section 6.5.

2. M. E. Lesk, ‘‘Lex — A Lexical Analyzer Generator,’’ Comp. Sci. Tech. Rep. No. 39, Bell Laboratories, Murray Hill,
New Jersey (D).

- 2 -

(3) Search — Given some keys, look through the files prepared by the hashing and sorting facil-
ity and derive the appropriate tags.

(4) Deliver — Given the tags, find the original items. This completes the searching process.

The first phase, making the index, is presumably done relatively infrequently. It should, of course, be
done whenever the data being indexed change. In contrast, the second phase, retrieving items, is
presumably done often, and must be rapid.

An effort is made to separate code which depends on the data being handled from code which
depends on the searching procedure. The search algorithm is involved only in steps (2) and (3), while
knowledge of the actual data files is needed only by steps (1) and (4). Thus it is easy to adapt to dif-
ferent data files or different search algorithms.

To start with, it is necessary to have some way of selecting or generating keys from input files.
For dealing with files that are basically English, we have a key-making program which automatically
selects words and passes them to the hashing and sorting program (step 2). The format used has one
line for each input item, arranged as follows:

name:start,length (tab) key1 key2 key3 ...

where name is the file name, start is the starting byte number, and length is the number of bytes in the
entry.

These lines are the only input used to make the index. The first field (the file name, byte position,
and byte count) is the tag of the item and can be used to retrieve it quickly. Normally, an item is either
a whole file or a section of a file delimited by blank lines. After the tab, the second field contains the
keys. The keys, if selected by the automatic program, are any alphanumeric strings which are not
among the 100 most frequent words in English and which are not entirely numeric (except for four-digit
numbers beginning 19, which are accepted as dates). Keys are truncated to six characters and converted
to lower case. Some selection is needed if the original items are very large. We normally just take the
first n keys, with n less than 100 or so; this replaces any attempt at intelligent selection. One file in our
system is a complete English dictionary; it would presumably be retrieved for all queries.

To generate an inverted index to the list of record tags and keys, the keys are hashed and sorted to
produce an index. What is wanted, ideally, is a series of lists showing the tags associated with each
key. To condense this, what is actually produced is a list showing the tags associated with each hash
code, and thus with some set of keys. To speed up access and further save space, a set of three or pos-
sibly four files is produced. These files are:

File Contents
entry Pointers to posting file

for each hash code
posting Lists of tag pointers for

each hash code
tag Tags for each item
key Keys for each item

(optional)

The posting file comprises the real data: it contains a sequence of lists of items posted under each hash
code. To speed up searching, the entry file is an array of pointers into the posting file, one per potential
hash code. Furthermore, the items in the lists in the posting file are not referred to by their complete
tag, but just by an address in the tag file, which gives the complete tags. The key file is optional and
contains a copy of the keys used in the indexing.

The searching process starts with a query, containing several keys. The goal is to obtain all items
which were indexed under these keys. The query keys are hashed, and the pointers in the entry file used
to access the lists in the posting file. These lists are addresses in the tag file of documents posted under
the hash codes derived from the query. The common items from all lists are determined; this must
include the items indexed by every key, but may also contain some items which are false drops, since
items referenced by the correct hash codes need not actually have contained the correct keys. Normally,

- 3 -

if there are several keys in the query, there are not likely to be many false drops in the final combined
list even though each hash code is somewhat ambiguous. The actual tags are then obtained from the tag
file, and to guard against the possibility that an item has false-dropped on some hash code in the query,
the original items are normally obtained from the delivery program (4) and the query keys checked
against them by string comparison.

Usually, therefore, the check for bad drops is made against the original file. However, if the key
derivation procedure is complex, it may be preferable to check against the keys fed to program (2). In
this case the optional key file which contains the keys associated with each item is generated, and the
item tag is supplemented by a string

;start,length

which indicates the starting byte number in the key file and the length of the string of keys for each
item. This file is not usually necessary with the present key-selection program, since the keys always
appear in the original document.

There is also an option (-Cn) for coordination level searching. This retrieves items which match
all but n of the query keys. The items are retrieved in the order of the number of keys that they match.
Of course, n must be less than the number of query keys (nothing is retrieved unless it matches at least
one key).

As an example, consider one set of 4377 references, comprising 660,000 bytes. This included
51,000 keys, of which 5,900 were distinct keys. The hash table is kept full to save space (at the
expense of time); 995 of 997 possible hash codes were used. The total set of index files (no key file)
included 171,000 bytes, about 26% of the original file size. It took 8 minutes of processor time to hash,
sort, and write the index. To search for a single query with the resulting index took 1.9 seconds of pro-
cessor time, while to find the same paper with a sequential linear search using grep (reading all of the
tags and keys) took 12.3 seconds of processor time.

We have also used this software to index all of the English stored on our UNIX system. This is the
index searched by the lookall command. On a typical day there were 29,000 files in our user file sys-
tem, containing about 152,000,000 bytes. Of these 5,300 files, containing 32,000,000 bytes (about 21%)
were English text. The total number of ‘words’ (determined mechanically) was 5,100,000. Of these
227,000 were selected as keys; 19,000 were distinct, hashing to 4,900 (of 5,000 possible) different hash
codes. The resulting inverted file indexes used 845,000 bytes, or about 2.6% of the size of the original
files. The particularly small indexes are caused by the fact that keys are taken from only the first 50
non-common words of some very long input files.

Even this large lookall index can be searched quickly. For example, to find this document by
looking for the keys ‘‘lesk inverted indexes’’ required 1.7 seconds of processor time and system time.
By comparison, just to search the 800,000 byte dictionary (smaller than even the inverted indexes, let
alone the 32,000,000 bytes of text files) with grep takes 29 seconds of processor time. The lookall pro-
gram is thus useful when looking for a document which you believe is stored on-line, but do not know
where. For example, many memos from the Computing Science Research Center are in its UNIX file
system, but it is often difficult to guess where a particular memo might be (it might have several
authors, each with many directories, and have been worked on by a secretary with yet more directories).
Instructions for the use of the lookall command are given in the manual section, shown in the appendix
to this memorandum.

The only indexes maintained routinely are those of publication lists and all English files. To make
other indexes, the programs for making keys, sorting them, searching the indexes, and delivering
answers must be used. Since they are usually invoked as parts of higher-level commands, they are not
in the default command directory, but are available to any user in the directory /usr/lib/refer . Three
programs are of interest: mkey , which isolates keys from input files; inv , which makes an index from a
set of keys; and hunt , which searches the index and delivers the items. Note that the two parts of the
retrieval phase are combined into one program, to avoid the excessive system work and delay which
would result from running these as separate processes.

These three commands have a large number of options to adapt to different kinds of input. The

- 4 -

user not interested in the detailed description that now follows may skip to section 3, which describes
the refer program, a packaged-up version of these tools specifically oriented towards formatting refer-
ences.

Make Keys. The program mkey is the key-making program corresponding to step (1) in phase A.
Normally, it reads its input from the file names given as arguments, and if there are no arguments it
reads from the standard input. It assumes that blank lines in the input delimit separate items, for each of
which a different line of keys should be generated. The lines of keys are written on the standard output.
Keys are any alphanumeric string in the input not among the most frequent words in English and not
entirely numeric (except that all-numeric strings are acceptable if they are between 1900 and 1999). In
the output, keys are translated to lower case, and truncated to six characters in length; any associated
punctuation is removed. The following flag arguments are recognized by mkey:

– c name Name of file of common words; default is /usr/lib/eign.
– f name Read a list of files from name and take each as an input argument.
– i chars Ignore all lines which begin with ‘%’ followed by any character in

chars .
– kn Use at most n keys per input item.
– ln Ignore items shorter than n letters long.
– nm Ignore as a key any word in the first m words of the list of common

English words. The default is 100.
– s Remove the labels (file:start,length) from the output; just give the

keys. Used when searching rather than indexing.
– w Each whole file is a separate item; blank lines in files are irrelevant.

The normal arguments for indexing references are the defaults, which are – c /usr/lib/eign , – n100 ,
and – l3 . For searching, the – s option is also needed. When the big lookall index of all English files
is run, the options are – w , – k50 , and – f (filelist) . When running on textual input, the mkey program
processes about 1000 English words per processor second. Unless the – k option is used (and the input
files are long enough for it to take effect) the output of mkey is comparable in size to its input.

Hash and invert. The inv program computes the hash codes and writes the inverted files. It
reads the output of mkey and writes the set of files described earlier in this section. It expects one argu-
ment, which is used as the base name for the three (or four) files to be written. Assuming an argument
of Index (the default) the entry file is named Index.ia , the posting file Index.ib , the tag file Index.ic , and
the key file (if present) Index.id . The inv program recognizes the following options:

– a Append the new keys to a previous set of inverted files, making new
files if there is no old set using the same base name.

– d Write the optional key file. This is needed when you can not check
for false drops by looking for the keys in the original inputs, i.e.
when the key derivation procedure is complicated and the output keys
are not words from the input files.

– hn The hash table size is n (default 997); n should be prime. Making n
bigger saves search time and spends disk space.

– i[u] name Take input from file name , instead of the standard input; if u is
present name is unlinked when the sort is started. Using this option
permits the sort scratch space to overlap the disk space used for input
keys.

– n Make a completely new set of inverted files, ignoring previous files.
– p Pipe into the sort program, rather than writing a temporary input file.

This saves disk space and spends processor time.
– v Verbose mode; print a summary of the number of keys which

finished indexing.

About half the time used in inv is in the contained sort. Assuming the sort is roughly linear,
however, a guess at the total timing for inv is 250 keys per second. The space used is usually of more

- 5 -

importance: the entry file uses four bytes per possible hash (note the – h option), and the tag file around
15-20 bytes per item indexed. Roughly, the posting file contains one item for each key instance and one
item for each possible hash code; the items are two bytes long if the tag file is less than 65336 bytes
long, and the items are four bytes wide if the tag file is greater than 65536 bytes long. To minimize
storage, the hash tables should be over-full; for most of the files indexed in this way, there is no other
real choice, since the entry file must fit in memory.

Searching and Retrieving. The hunt program retrieves items from an index. It combines, as
mentioned above, the two parts of phase (B): search and delivery. The reason why it is efficient to
combine delivery and search is partly to avoid starting unnecessary processes, and partly because the
delivery operation must be a part of the search operation in any case. Because of the hashing, the
search part takes place in two stages: first items are retrieved which have the right hash codes associ-
ated with them, and then the actual items are inspected to determine false drops, i.e. to determine if
anything with the right hash codes doesn’t really have the right keys. Since the original item is
retrieved to check on false drops, it is efficient to present it immediately, rather than only giving the tag
as output and later retrieving the item again. If there were a separate key file, this argument would not
apply, but separate key files are not common.

Input to hunt is taken from the standard input, one query per line. Each query should be in mkey
– s output format; all lower case, no punctuation. The hunt program takes one argument which specifies
the base name of the index files to be searched. Only one set of index files can be searched at a time,
although many text files may be indexed as a group, of course. If one of the text files has been changed
since the index, that file is searched with fgrep; this may occasionally slow down the searching, and
care should be taken to avoid having many out of date files. The following option arguments are recog-
nized by hunt:

– a Give all output; ignore checking for false drops.
– Cn Coordination level n; retrieve items with not more than n terms of

the input missing; default C0 , implying that each search term must
be in the output items.

– F[ynd] ‘‘– Fy’’ gives the text of all the items found; ‘‘– Fn’’ suppresses
them. ‘‘– Fd ’’ where d is an integer gives the text of the first d
items. The default is – Fy.

– g Do not use fgrep to search files changed since the index was made;
print an error comment instead.

– i string Take string as input, instead of reading the standard input.
– l n The maximum length of internal lists of candidate items is n; default

1000.
– o string Put text output (‘‘– Fy’’) in string; of use only when invoked from

another program.
– p Print hash code frequencies; mostly for use in optimizing hash table

sizes.
– T[ynd] ‘‘– Ty’’ gives the tags of the items found; ‘‘– Tn’’ suppresses them.

‘‘– Td ’’ where d is an integer gives the first d tags. The default is
– Tn .

– t string Put tag output (‘‘– Ty’’) in string; of use only when invoked from
another program.

The timing of hunt is complex. Normally the hash table is overfull, so that there will be many
false drops on any single term; but a multi-term query will have few false drops on all terms. Thus if a
query is underspecified (one search term) many potential items will be examined and discarded as false
drops, wasting time. If the query is overspecified (a dozen search terms) many keys will be examined
only to verify that the single item under consideration has that key posted. The variation of search time
with number of keys is shown in the table below. Queries of varying length were constructed to retrieve
a particular document from the file of references. In the sequence to the left, search terms were chosen
so as to select the desired paper as quickly as possible. In the sequence on the right, terms were chosen
inefficiently, so that the query did not uniquely select the desired document until four keys had been

- 6 -

used. The same document was the target in each case, and the final set of eight keys are also identical;
the differences at five, six and seven keys are produced by measurement error, not by the slightly dif-
ferent key lists.

Efficient Keys Inefficient Keys
No. keys Total drops Retrieved Search time No. keys Total drops Retrieved Search time

(incl. false) Documents (seconds) (incl. false) Documents (seconds)

1 15 3 1.27 1 68 55 5.96
2 1 1 0.11 2 29 29 2.72
3 1 1 0.14 3 8 8 0.95
4 1 1 0.17 4 1 1 0.18
5 1 1 0.19 5 1 1 0.21
6 1 1 0.23 6 1 1 0.22
7 1 1 0.27 7 1 1 0.26
8 1 1 0.29 8 1 1 0.29














As would be expected, the optimal search is achieved when the query just specifies the answer; however,
overspecification is quite cheap. Roughly, the time required by hunt can be approximated as 30 mil-
liseconds per search key plus 75 milliseconds per dropped document (whether it is a false drop or a real
answer). In general, overspecification can be recommended; it protects the user against additions to the
data base which turn previously uniquely-answered queries into ambiguous queries.

The careful reader will have noted an enormous discrepancy between these times and the earlier
quoted time of around 1.9 seconds for a search. The times here are purely for the search and retrieval:
they are measured by running many searches through a single invocation of the hunt program alone.
Usually, the UNIX command processor (the shell) must start both the mkey and hunt processes for each
query, and arrange for the output of mkey to be fed to the hunt program. This adds a fixed overhead of
about 1.7 seconds of processor time to any single search. Furthermore, remember that all these times
are processor times: on a typical morning on our PDP 11/70 system, with about one dozen people
logged on, to obtain 1 second of processor time for the search program took between 2 and 12 seconds
of real time, with a median of 3.9 seconds and a mean of 4.8 seconds. Thus, although the work
involved in a single search may be only 200 milliseconds, after you add the 1.7 seconds of startup pro-
cessor time and then assume a 4:1 elapsed/processor time ratio, it will be 8 seconds before any response
is printed.

3. Selecting and Formatting References for TROFF

The major application of the retrieval software is refer, which is a troff preprocessor like eqn .3 It
scans its input looking for items of the form

.[
imprecise citation
.]

where an imprecise citation is merely a string of words found in the relevant bibliographic citation. This
is translated into a properly formatted reference. If the imprecise citation does not correctly identify a
single paper (either selecting no papers or too many) a message is given. The data base of citations
searched may be tailored to each system, and individual users may specify their own citation files. On
our system, the default data base is accumulated from the publication lists of the members of our organi-
zation, plus about half a dozen personal bibliographies that were collected. The present total is about
4300 citations, but this increases steadily. Even now, the data base covers a large fraction of local cita-
tions.

For example, the reference for the eqn paper above was specified as

3. B. W. Kernighan and L. L. Cherry, ‘‘A System for Typesetting Mathematics,’’ Comm. Assoc. Comp. Mach. 18, pp.151-157
(March 1975).

- 7 -

...
preprocessor like
.I eqn.
.[
kernighan cherry acm 1975
.]
It scans its input looking for items
...

This paper was itself printed using refer. The above input text was processed by refer as well as tbl
and troff by the command

refer memo-file  tbl  troff – ms

and the reference was automatically translated into a correct citation to the ACM paper on mathematical
typesetting.

The procedure to use to place a reference in a paper using refer is as follows. First, use the look-
bib command to check that the paper is in the data base and to find out what keys are necessary to
retrieve it. This is done by typing lookbib and then typing some potential queries until a suitable query
is found. For example, had one started to find the eqn paper shown above by presenting the query

$ lookbib
kernighan cherry
(EOT)

lookbib would have found several items; experimentation would quickly have shown that the query
given above is adequate. Overspecifying the query is of course harmless; it is even desirable, since it
decreases the risk that a document added to the publication data base in the future will be retrieved in
addition to the intended document. The extra time taken by even a grossly overspecified query is quite
small. A particularly careful reader may have noticed that ‘‘acm’’ does not appear in the printed cita-
tion; we have supplemented some of the data base items with extra keywords, such as common abbrevi-
ations for journals or other sources, to aid in searching.

If the reference is in the data base, the query that retrieved it can be inserted in the text, between
.[and .] brackets. If it is not in the data base, it can be typed into a private file of references, using the
format discussed in the next section, and then the – p option used to search this private file. Such a
command might read (if the private references are called myfile)

refer – p myfile document  tbl  eqn  troff – ms . . .

where tbl and/or eqn could be omitted if not needed. The use of the – ms macros4 or some other macro
package, however, is essential. Refer only generates the data for the references; exact formatting is
done by some macro package, and if none is supplied the references will not be printed.

By default, the references are numbered sequentially, and the – ms macros format references as
footnotes at the bottom of the page. This memorandum is an example of that style. Other possibilities
are discussed in section 5 below.

4. Reference Files.

A reference file is a set of bibliographic references usable with refer. It can be indexed using the
software described in section 2 for fast searching. What refer does is to read the input document
stream, looking for imprecise citation references. It then searches through reference files to find the full
citations, and inserts them into the document. The format of the full citation is arranged to make it con-
venient for a macro package, such as the – ms macros, to format the reference for printing. Since the
format of the final reference is determined by the desired style of output, which is determined by the

4. M. E. Lesk, Typing Documents on UNIX and GCOS: The -ms Macros for Troff, 1977.

- 8 -

macros used, refer avoids forcing any kind of reference appearance. All it does is define a set of string
registers which contain the basic information about the reference; and provide a macro call which is
expanded by the macro package to format the reference. It is the responsibility of the final macro pack-
age to see that the reference is actually printed; if no macros are used, and the output of refer fed
untranslated to troff, nothing at all will be printed.

The strings defined by refer are taken directly from the files of references, which are in the fol-
lowing format. The references should be separated by blank lines. Each reference is a sequence of lines
beginning with % and followed by a key-letter. The remainder of that line, and successive lines until
the next line beginning with %, contain the information specified by the key-letter. In general, refer
does not interpret the information, but merely presents it to the macro package for final formatting. A
user with a separate macro package, for example, can add new key-letters or use the existing ones for
other purposes without bothering refer.

The meaning of the key-letters given below, in particular, is that assigned by the – ms macros.
Not all information, obviously, is used with each citation. For example, if a document is both an inter-
nal memorandum and a journal article, the macros ignore the memorandum version and cite only the
journal article. Some kinds of information are not used at all in printing the reference; if a user does not
like finding references by specifying title or author keywords, and prefers to add specific keywords to
the citation, a field is available which is searched but not printed (K).

The key letters currently recognized by refer and – ms, with the kind of information implied, are:

Key Information specified Key Information specified
A Author’s name N Issue number
B Title of book containing item O Other information
C City of publication P Page(s) of article
D Date R Technical report reference
E Editor of book containing item T Title
G Government (NTIS) ordering number V Volume number
I Issuer (publisher)
J Journal name
K Keys (for searching) X or
L Label Y or
M Memorandum label Z Information not used by refer

For example, a sample reference could be typed as:

%T Bounds on the Complexity of the Maximal
Common Subsequence Problem
%Z ctr127
%A A. V. Aho
%A D. S. Hirschberg
%A J. D. Ullman
%J J. ACM
%V 23
%N 1
%P 1-12
%M abcd-78
%D Jan. 1976

Order is irrelevant, except that authors are shown in the order given. The output of refer is a stream of
string definitions, one for each of the fields of each reference, as shown below.

- 9 -

.]-

.ds [A authors’ names ...

.ds [T title ...

.ds [J journal ...

...

.] [type-number

The refer program, in general, does not concern itself with the significance of the strings. The different
fields are treated identically by refer , except that the X, Y and Z fields are ignored (see the – i option of
mkey) in indexing and searching. All refer does is select the appropriate citation, based on the keys.
The macro package must arrange the strings so as to produce an appropriately formatted citation. In this
process, it uses the convention that the ‘T’ field is the title, the ‘J’ field the journal, and so forth.

The refer program does arrange the citation to simplify the macro package’s job, however. The
special macro .]– precedes the string definitions and the special macro .] [follows. These are changed
from the input .[and .] so that running the same file through refer again is harmless. The .]– macro
can be used by the macro package to initialize. The .] [macro, which should be used to print the refer-
ence, is given an argument type-number to indicate the kind of reference, as follows:

Value Kind of reference
1 Journal article
2 Book
3 Article within book
4 Technical report
5 Bell Labs technical memorandum
0 Other

The type is determined by the presence or absence of particular fields in the citation (a journal article
must have a ‘J’ field, a book must have an ‘I’ field, and so forth). To a small extent, this violates the
above rule that refer does not concern itself with the contents of the citation; however, the classification
of the citation in troff macros would require a relatively expensive and obscure program. Any macro
writer may, of course, preserve consistency by ignoring the argument to the .] [macro.

The reference is flagged in the text with the sequence

* ([.number* (.]

where number is the footnote number. The strings [. and .] should be used by the macro package to
format the reference flag in the text. These strings can be replaced for a particular footnote, as described
in section 5. The footnote number (or other signal) is available to the reference macro .] [as the string
register [F. To simplify dealing with a text reference that occurs at the end of a sentence, refer treats a
reference which follows a period in a special way. The period is removed, and the reference is preceded
by a call for the string <. and followed by a call for the string >. For example, if a reference follows
‘‘end.’’ it will appear as

end*(<.*([.number*(.]*(>.

where number is the footnote number. The macro package should turn either the string >. or <. into a
period and delete the other one. This permits the output to have either the form ‘‘end[31].’’ or ‘‘end.31’’
as the macro package wishes. Note that in one case the period precedes the number and in the other it
follows the number.

In some cases users wish to suspend the searching, and merely use the reference macro formatting.
That is, the user doesn’t want to provide a search key between .[and .] brackets, but merely the refer-
ence lines for the appropriate document. Alternatively, the user can wish to add a few fields to those in
the reference as in the standard file, or override some fields. Altering or replacing fields, or supplying
whole references, is easily done by inserting lines beginning with %; any such line is taken as direct
input to the reference processor rather than keys to be searched. Thus

- 10 -

.[
key1 key2 key3 ...
%Q New format item
%R Override report name
.]

makes the indicates changes to the result of searching for the keys. All of the search keys must be
given before the first % line.

If no search keys are provided, an entire citation can be provided in-line in the text. For example,
if the eqn paper citation were to be inserted in this way, rather than by searching for it in the data base,
the input would read

...
preprocessor like
.I eqn.
.[
%A B. W. Kernighan
%A L. L. Cherry
%T A System for Typesetting Mathematics
%J Comm. ACM
%V 18
%N 3
%P 151-157
%D March 1975
.]
It scans its input looking for items
...

This would produce a citation of the same appearance as that resulting from the file search.

As shown, fields are normally turned into troff strings. Sometimes users would rather have them
defined as macros, so that other troff commands can be placed into the data. When this is necessary,
simply double the control character % in the data. Thus the input

.[
%V 23
%%M
Bell Laboratories,
Murray Hill, N.J. 07974
.]

is processed by refer into

.ds [V 23

.de [M
Bell Laboratories,
Murray Hill, N.J. 07974
..

The information after %%M is defined as a macro to be invoked by .[M while the information after
%V is turned into a string to be invoked by \∗([V. At present – ms expects all information as strings.

5. Collecting References and other Refer Options

Normally, the combination of refer and – ms formats output as troff footnotes which are consecu-
tively numbered and placed at the bottom of the page. However, options exist to place the references at
the end; to arrange references alphabetically by senior author; and to indicate references by strings in the
text of the form [Name1975a] rather than by number. Whenever references are not placed at the bottom
of a page identical references are coalesced.

- 11 -

For example, the – e option to refer specifies that references are to be collected; in this case they
are output whenever the sequence

.[
$LIST$
.]

is encountered. Thus, to place references at the end of a paper, the user would run refer with the – e
option and place the above $LIST$ commands after the last line of the text. Refer will then move all
the references to that point. To aid in formatting the collected references, refer writes the references
preceded by the line

.]<

and followed by the line

.]>

to invoke special macros before and after the references.

Another possible option to refer is the – s option to specify sorting of references. The default, of
course, is to list references in the order presented. The – s option implies the – e option, and thus
requires a

.[
$LIST$
.]

entry to call out the reference list. The – s option may be followed by a string of letters, numbers, and
‘+’ signs indicating how the references are to be sorted. The sort is done using the fields whose key-
letters are in the string as sorting keys; the numbers indicate how many of the fields are to be con-
sidered, with ‘+’ taken as a large number. Thus the default is – sAD meaning ‘‘Sort on senior author,
then date.’’ To sort on all authors and then title, specify – sA+T. And to sort on two authors and then
the journal, write – sA2J.

Other options to refer change the signal or label inserted in the text for each reference. Normally
these are just sequential numbers, and their exact placement (within brackets, as superscripts, etc.) is
determined by the macro package. The – l option replaces reference numbers by strings composed of the
senior author’s last name, the date, and a disambiguating letter. If a number follows the l as in – l3 only
that many letters of the last name are used in the label string. To abbreviate the date as well the form
-lm,n shortens the last name to the first m letters and the date to the last n digits. For example, the
option – l3,2 would refer to the eqn paper (reference 3) by the signal Ker75a , since it is the first cited
reference by Kernighan in 1975.

A user wishing to specify particular labels for a private bibliography may use the – k option.
Specifying – kx causes the field x to be used as a label. The default is L. If this field ends in – , that
character is replaced by a sequence letter; otherwise the field is used exactly as given.

If none of the refer -produced signals are desired, the – b option entirely suppresses automatic text
signals.

If the user wishes to override the – ms treatment of the reference signal (which is normally to
enclose the number in brackets in nroff and make it a superscript in troff) this can be done easily. If
the lines .[or .] contain anything following these characters, the remainders of these lines are used to
surround the reference signal, instead of the default. Thus, for example, to say ‘‘See reference (2).’’
and avoid ‘‘See reference.2’’ the input might appear

See reference
.[(
imprecise citation ...
.]).

Note that blanks are significant in this construction. If a permanent change is desired in the style of

- 12 -

reference signals, however, it is probably easier to redefine the strings [. and .] (which are used to
bracket each signal) than to change each citation.

Although normally refer limits itself to retrieving the data for the reference, and leaves to a macro
package the job of arranging that data as required by the local format, there are two special options for
rearrangements that can not be done by macro packages. The – c option puts fields into all upper case
(CAPS-SMALL CAPS in troff output). The key-letters indicated what information is to be translated to
upper case follow the c, so that – cAJ means that authors’ names and journals are to be in caps. The – a
option writes the names of authors last name first, that is A. D. Hall, Jr. is written as Hall, A. D. Jr .
The citation form of the Journal of the ACM , for example, would require both – cA and – a options.
This produces authors’ names in the style KERNIGHAN, B. W. AND CHERRY, L. L. for the previous exam-
ple. The – a option may be followed by a number to indicate how many author names should be
reversed; – a1 (without any – c option) would produce Kernighan, B. W. and L. L. Cherry, for example.

Finally, there is also the previously-mentioned – p option to let the user specify a private file of
references to be searched before the public files. Note that refer does not insist on a previously made
index for these files. If a file is named which contains reference data but is not indexed, it will be
searched (more slowly) by refer using fgrep. In this way it is easy for users to keep small files of new
references, which can later be added to the public data bases.

NROFF⁄TROFF User’s Manual

Joseph F. Ossanna

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

NROFF and TROFF are text processors under the PDP-11 UNIX Time-Sharing System1 that format text for
typewriter-like terminals and for a Graphic Systems phototypesetter, respectively. They accept lines of text inter-
spersed with lines of format control information and format the text into a printable, paginated document having
a user-designed style. NROFF and TROFF offer unusual freedom in document styling, including: arbitrary style
headers and footers; arbitrary style footnotes; multiple automatic sequence numbering for paragraphs, sections,
etc; multiple column output; dynamic font and point-size control; arbitrary horizontal and vertical local motions
at any point; and a family of automatic overstriking, bracket construction, and line drawing functions.

NROFF and TROFF are highly compatible with each other and it is almost always possible to prepare input
acceptable to both. Conditional input is provided that enables the user to embed input expressly destined for
either program. NROFF can prepare output directly for a variety of terminal types and is capable of utilizing the
full resolution of each terminal.

Usage

The general form of invoking NROFF (or TROFF) at UNIX command level is

nroff options files (or troff options files)

where options represents any of a number of option arguments and files represents the list of files containing the
document to be formatted. An argument consisting of a single minus (–) is taken to be a file name correspond-
ing to the standard input. If no file names are given input is taken from the standard input. The options, which
may appear in any order so long as they appear before the files, are:

O Op pt ti io on n E Ef ff fe ec ct t

– olist Print only pages whose page numbers appear in list, which consists of comma-separated
numbers and number ranges. A number range has the form N– M and means pages N
through M; a initial – N means from the beginning to page N; and a final N– means from
N to the end.

– nN Number first generated page N.

– sN Stop every N pages. NROFF will halt prior to every N pages (default N=1) to allow paper
loading or changing, and will resume upon receipt of a newline. TROFF will stop the pho-
totypesetter every N pages, produce a trailer to allow changing cassettes, and will resume
after the phototypesetter START button is pressed.

– mname Prepends the macro file ⁄usr⁄lib⁄tmac.name to the input files.

– raN Register a (one-character) is set to N.

– i Read standard input after the input files are exhausted.

– q Invoke the simultaneous input-output mode of the rd request.

- 1 -

NROFF/TROFF User’s Manual
October 11, 1976

N NR RO OF FF F O On nl ly y

– Tname Specifies the name of the output terminal type. Currently defined names are 37 for the
(default) Model 37 Teletype, tn300 for the GE TermiNet 300 (or any terminal without
half-line capabilities), 300S for the DASI-300S, 300 for the DASI-300, and 450 for the
DASI-450 (Diablo Hyterm).

– e Produce equally-spaced words in adjusted lines, using full terminal resolution.

T TR RO OF FF F O On nl ly y

– t Direct output to the standard output instead of the phototypesetter.

– f Refrain from feeding out paper and stopping phototypesetter at the end of the run.

– w Wait until phototypesetter is available, if currently busy.

– b TROFF will report whether the phototypesetter is busy or available. No text processing is
done.

– a Send a printable (ASCII) approximation of the results to the standard output.

– pN Print all characters in point size N while retaining all prescribed spacings and motions, to
reduce phototypesetter elasped time.

– g Prepare output for the Murray Hill Computation Center phototypesetter and direct it to the
standard output.

Each option is invoked as a separate argument; for example,

nroff – o4,8– 10 – T300S – mabc file1 file2

requests formatting of pages 4, 8, 9, and 10 of a document contained in the files named file1 and file2, specifies
the output terminal as a DASI-300S, and invokes the macro package abc.

Various pre- and post-processors are available for use with NROFF and TROFF. These include the equation
preprocessors NEQN and EQN2 (for NROFF and TROFF respectively), and the table-construction preprocessor
TBL3. A reverse-line postprocessor COL4 is available for multiple-column NROFF output on terminals without
reverse-line ability; COL expects the Model 37 Teletype escape sequences that NROFF produces by default. TK4

is a 37 Teletype simulator postprocessor for printing NROFF output on a Tektronix 4014. TCAT4 is
phototypesetter-simulator postprocessor for TROFF that produces an approximation of phototypesetter output on a
Tektronix 4014. For example, in

tbl files  eqn  troff – t options  tcat

the first  indicates the piping of TBL’s output to EQN’s input; the second the piping of EQN’s output to
TROFF’s input; and the third indicates the piping of TROFF’s output to TCAT. GCAT4 can be used to send
TROFF (– g) output to the Murray Hill Computation Center.

The remainder of this manual consists of: a Summary and Index; a Reference Manual keyed to the index; and a
set of Tutorial Examples. Another tutorial is [5].

Joseph F. Ossanna

References

[1] K. Thompson, D. M. Ritchie, UNIX Programmer’s Manual, Sixth Edition (May 1975).

[2] B. W. Kernighan, L. L. Cherry, Typesetting Mathematics — User’s Guide (Second Edition), Bell Laboratories internal
memorandum.

[3] M. E. Lesk, Tbl — A Program to Format Tables, Bell Laboratories internal memorandum.

[4] Internal on-line documentation, on UNIX.

[5] B. W. Kernighan, A TROFF Tutorial, Bell Laboratories internal memorandum.

- 2 -

NROFF/TROFF User’s Manual
October 11, 1976

SUMMARY AND INDEX

R Re eq qu ue es st t I In ni it ti ia al l I If f N No o
F Fo or rm m V Va al lu ue e* * A Ar rg gu um me en nt t N No ot te es s# # E Ex xp pl la an na at ti io on n

1. General Explanation

2. Font and Character Size Control

.ps ±N 10 point previous E Point size; also \s±N.†

.ss N 12⁄36 em ignored E Space-character size set to N⁄36 em.†

.cs F N M off - P Constant character space (width) mode (font F).†

.bd F N off - P Embolden font F by N−1 units.†

.bd S F N off - P Embolden Special Font when current font is F.†

.ft F Roman previous E Change to font F = x, xx, or 1-4. Also \fx, \f(xx, \fN.

.fp N F R,I,B,S ignored - Font named F mounted on physical position 1≤N≤4.

3. Page Control

.pl ±N 11 in 11 in v Page length.

.bp ±N N=1 - B‡,v Eject current page; next page number N.

.pn ±N N=1 ignored - Next page number N.

.po ±N 0; 26⁄27 in previous v Page offset.

.ne N - N=1V D,v Need N vertical space (V = vertical spacing).

.mk R none internal D Mark current vertical place in register R.

.rt ±N none internal D,v Return (upward only) to marked vertical place.

4. Text Filling, Adjusting, and Centering

.br - - B Break.

.fi fill - B,E Fill output lines.

.nf fill - B,E No filling or adjusting of output lines.

.ad c adj,both adjust E Adjust output lines with mode c.

.na adjust - E No output line adjusting.

.ce N off N=1 B,E Center following N input text lines.

5. Vertical Spacing

.vs N 1⁄6in;12pts previous E,p Vertical base line spacing (V).

.ls N N=1 previous E Output N−1 Vs after each text output line.

.sp N - N=1V B,v Space vertical distance N in either direction.

.sv N - N=1V v Save vertical distance N.

.os - - - Output saved vertical distance.

.ns space - D Turn no-space mode on.

.rs - - D Restore spacing; turn no-space mode off.

6. Line Length and Indenting

.ll ±N 6.5 in previous E,m Line length.

.in ±N N=0 previous B,E,m Indent.

.ti ±N - ignored B,E,m Temporary indent.

7. Macros, Strings, Diversion, and Position Traps

.de xx yy - .yy=.. - Define or redefine macro xx; end at call of yy.

.am xx yy - .yy=.. - Append to a macro.

.ds xx string - ignored - Define a string xx containing string.

*Values separated by ";" are for NROFF and TROFF respectively.

#Notes are explained at the end of this Summary and Index

†No effect in NROFF.

‡The use of " ´ " as control character (instead of ".") suppresses the break function.

- 3 -

NROFF/TROFF User’s Manual
October 11, 1976

R Re eq qu ue es st t I In ni it ti ia al l I If f N No o
F Fo or rm m V Va al lu ue e A Ar rg gu um me en nt t N No ot te es s E Ex xp pl la an na at ti io on n

.as xx string - ignored - Append string to string xx.

.rm xx - ignored - Remove request, macro, or string.

.rn xx yy - ignored - Rename request, macro, or string xx to yy.

.di xx - end D Divert output to macro xx.

.da xx - end D Divert and append to xx.

.wh N xx - - v Set location trap; negative is w.r.t. page bottom.

.ch xx N - - v Change trap location.

.dt N xx - off D,v Set a diversion trap.

.it N xx - off E Set an input-line count trap.

.em xx none none - End macro is xx.

8. Number Registers

.nr R ±N M - u Define and set number register R; auto-increment by M.

.af R c arabic - - Assign format to register R (c=1, i, I, a, A).

.rr R - - - Remove register R.

9. Tabs, Leaders, and Fields

.ta Nt ... 0.8; 0.5in none E,m Tab settings; left type, unless t=R(right), C(centered).

.tc c none none E Tab repetition character.

.lc c . none E Leader repetition character.

.fc a b off off - Set field delimiter a and pad character b.

10. Input and Output Conventions and Character Translations

.ec c \ \ - Set escape character.

.eo on - - Turn off escape character mechanism.

.lg N -; on on - Ligature mode on if N>0.

.ul N off N=1 E Underline (italicize in TROFF) N input lines.

.cu N off N=1 E Continuous underline in NROFF; like ul in TROFF.

.uf F Italic Italic - Underline font set to F (to be switched to by ul).

.cc c . . E Set control character to c.

.c2 c ´ ´ E Set nobreak control character to c.

.tr abcd.... none - O Translate a to b, etc. on output.

11. Local Horizontal and Vertical Motions, and the Width Function

12. Overstrike, Bracket, Line-drawing, and Zero-width Functions

13. Hyphenation.

.nh hyphenate - E No hyphenation.

.hy N hyphenate hyphenate E Hyphenate; N = mode.

.hc c \% \% E Hyphenation indicator character c.

.hw word1 ... ignored - Exception words.

14. Three Part Titles.

.tl ´left ´center ´right ´ - - Three part title.

.pc c % off - Page number character.

.lt ±N 6.5 in previous E,m Length of title.

15. Output Line Numbering.

.nm ±N M S I off E Number mode on or off, set parameters.

.nn N - N=1 E Do not number next N lines.

- 4 -

NROFF/TROFF User’s Manual
October 11, 1976

R Re eq qu ue es st t I In ni it ti ia al l I If f N No o
F Fo or rm m V Va al lu ue e A Ar rg gu um me en nt t N No ot te es s E Ex xp pl la an na at ti io on n

16. Conditional Acceptance of Input

.if c anything - - If condition c true, accept anything as input,
for multi-line use \{anything \}.

.if !c anything - - If condition c false, accept anything.

.if N anything- u If expression N > 0, accept anything.

.if !N anything - u If expression N ≤ 0, accept anything.

.if ´string1 ´string2 ´ anything - If string1 identical to string2, accept anything.

.if ! ´string1 ´string2 ´ anything - If string1 not identical to string2, accept anything.

.ie c anything - u If portion of if-else; all above forms (like if).

.el anything - - Else portion of if-else.

17. Environment Switching.

.ev N N=0 previous - Environment switched (push down).

18. Insertions from the Standard Input

.rd prompt - prompt=BEL - Read insertion.

.ex - - - Exit from NROFF⁄TROFF.

19. Input⁄Output File Switching

.so filename - - Switch source file (push down).

.nx filename end-of-file - Next file.

.pi program - - Pipe output to program (NROFF only).

20. Miscellaneous

.mc c N - off E,m Set margin character c and separation N.

.tm string - newline - Print string on terminal (UNIX standard message output).

.ig yy - .yy=.. - Ignore till call of yy.

.pm t - all - Print macro names and sizes;
if t present, print only total of sizes.

.fl - - B Flush output buffer.

21. Output and Error Messages

_ ___

Notes-

B Request normally causes a break.
D Mode or relevant parameters associated with current diversion level.
E Relevant parameters are a part of the current environment.
O Must stay in effect until logical output.
P Mode must be still or again in effect at the time of physical output.

v,p,m,u Default scale indicator; if not specified, scale indicators are ignored.

Alphabetical Request and Section Number Cross Reference

ad 4
af 8
am 7
as 7
bd 2
bp 3
br 4
c2 10

cc 10
ce 4
ch 7
cs 2
cu 10
da 7
de 7
di 7

ds 7
dt 7
ec 10
el 16
em 7
eo 10
ev 17
ex 18

fc 9
fi 4
fl 20
fp 2
ft 2
hc 13
hw 13
hy 13

ie 16
if 16
ig 20
in 6
it 7
lc 9
lg 10
li 10

ll 6
ls 5
lt 14
mc 20
mk 3
na 4
ne 3
nf 4

nh 13
nm 15
nn 15
nr 8
ns 5
nx 19
os 5
pc 14

pi 19
pl 3
pm 20
pn 3
po 3
ps 2
rd 18
rm 7

rn 7
rr 8
rs 5
rt 3
so 19
sp 5
ss 2
sv 5

ta 9
tc 9
ti 6
tl 14
tm 20
tr 10
uf 10
ul 10

vs 5
wh 7

- 5 -

NROFF/TROFF User’s Manual
October 11, 1976

Escape Sequences for Characters, Indicators, and Functions

S Se ec ct ti io on n E Es sc ca ap pe e
R Re ef fe er re en nc ce e S Se eq qu ue en nc ce e M Me ea an ni in ng g

10.1 \\ \ (to prevent or delay the interpretation of \)
10.1 \e Printable version of the current escape character.

2.1 \´ ´ (acute accent); equivalent to \(aa
2.1 \` ` (grave accent); equivalent to \(ga
2.1 \– – Minus sign in the current font
7 \ . Period (dot) (see de)

11.1 \(space) Unpaddable space-size space character
11.1 \0 Digit width space
11.1 \  1⁄6 em narrow space character (zero width in NROFF)
11.1 \ˆ 1⁄12 em half-narrow space character (zero width in NROFF)

4.1 \& Non-printing, zero width character
10.6 \! Transparent line indicator
10.7 \" Beginning of comment
7.3 \$N Interpolate argument 1≤N≤9

13 \% Default optional hyphenation character
2.1 \(xx Character named xx
7.1 \∗x, \∗(xx Interpolate string x or xx
9.1 \a Non-interpreted leader character

12.3 \b´abc... ´ Bracket building function
4.2 \c Interrupt text processing

11.1 \d Forward (down) 1⁄2 em vertical motion (1⁄2 line in NROFF)
2.2 \fx,\f(xx,\fN Change to font named x or xx, or position N

11.1 \h´N ´ Local horizontal motion; move right N (negative left)
11.3 \kx Mark horizontal input place in register x
12.4 \l ´Nc ´ Horizontal line drawing function (optionally with c)
12.4 \L´Nc ´ Vertical line drawing function (optionally with c)
8 \nx,\n(xx Interpolate number register x or xx

12.1 \o´abc... ´ Overstrike characters a, b, c, ...
4.1 \p Break and spread output line

11.1 \r Reverse 1 em vertical motion (reverse line in NROFF)
2.3 \sN, \s±N Point-size change function
9.1 \t Non-interpreted horizontal tab

11.1 \u Reverse (up) 1⁄2 em vertical motion (1⁄2 line in NROFF)
11.1 \v´N ´ Local vertical motion; move down N (negative up)
11.2 \w´string ´ Interpolate width of string

5.2 \x´N ´ Extra line-space function (negative before, positive after)
12.2 \zc Print c with zero width (without spacing)
16 \{ Begin conditional input
16 \} End conditional input
10.7 \(newline) Concealed (ignored) newline

- \X X, any character not listed above

The escape sequences \\, \ ., \", \$, \∗, \a, \n, \t, and \(newline) are interpreted in copy mode (§7.2).

- 6 -

NROFF/TROFF User’s Manual
October 11, 1976

Predefined General Number Registers

S Se ec ct ti io on n R Re eg gi is st te er r
R Re ef fe er re en nc ce e N Na am me e D De es sc cr ri ip pt ti io on n

3 % Current page number.
11.2 ct Character type (set by width function).

7.4 dl Width (maximum) of last completed diversion.
7.4 dn Height (vertical size) of last completed diversion.
- dw Current day of the week (1-7).
- dy Current day of the month (1-31).

11.3 hp Current horizontal place on input line.
15 ln Output line number.

- mo Current month (1-12).
4.1 nl Vertical position of last printed text base-line.

11.2 sb Depth of string below base line (generated by width function).
11.2 st Height of string above base line (generated by width function).

- yr Last two digits of current year.

Predefined Read-Only Number Registers

S Se ec ct ti io on n R Re eg gi is st te er r
R Re ef fe er re en nc ce e N Na am me e D De es sc cr ri ip pt ti io on n

7.3 .$ Number of arguments available at the current macro level.
- .A Set to 1 in TROFF, if – a option used; always 1 in NROFF.

11.1 .H Available horizontal resolution in basic units.
- .T Set to 1 in NROFF, if – T option used; always 0 in TROFF.

11.1 .V Available vertical resolution in basic units.
5.2 .a Post-line extra line-space most recently utilized using \x´N ´.
- .c Number of lines read from current input file.
7.4 .d Current vertical place in current diversion; equal to nl, if no diversion.
2.2 .f Current font as physical quadrant (1-4).
4 .h Text base-line high-water mark on current page or diversion.
6 .i Current indent.
6 .l Current line length.
4 .n Length of text portion on previous output line.
3 .o Current page offset.
3 .p Current page length.
2.3 .s Current point size.
7.5 .t Distance to the next trap.
4.1 .u Equal to 1 in fill mode and 0 in nofill mode.
5.1 .v Current vertical line spacing.

11.2 .w Width of previous character.
- .x Reserved version-dependent register.
- .y Reserved version-dependent register.
7.4 .z Name of current diversion.

- 7 -

NROFF/TROFF User’s Manual
October 11, 1976

REFERENCE MANUAL

1. General Explanation

1.1. Form of input. Input consists of text lines, which are destined to be printed, interspersed with control lines,
which set parameters or otherwise control subsequent processing. Control lines begin with a control
character—normally . (period) or ´ (acute accent)—followed by a one or two character name that specifies a
basic request or the substitution of a user-defined macro in place of the control line. The control character ´
suppresses the break function—the forced output of a partially filled line—caused by certain requests. The con-
trol character may be separated from the request/macro name by white space (spaces and/or tabs) for esthetic rea-
sons. Names must be followed by either space or newline. Control lines with unrecognized names are ignored.

Various special functions may be introduced anywhere in the input by means of an escape character, normally \.
For example, the function \nR causes the interpolation of the contents of the number register R in place of the
function; here R is either a single character name as in \nx, or left-parenthesis-introduced, two-character name as
in \n(xx.

1.2. Formatter and device resolution. TROFF internally uses 432 units⁄inch, corresponding to the Graphic Sys-
tems phototypesetter which has a horizontal resolution of 1⁄432 inch and a vertical resolution of 1⁄144 inch.
NROFF internally uses 240 units⁄inch, corresponding to the least common multiple of the horizontal and vertical
resolutions of various typewriter-like output devices. TROFF rounds horizontal⁄vertical numerical parameter input
to the actual horizontal⁄vertical resolution of the Graphic Systems typesetter. NROFF similarly rounds numerical
input to the actual resolution of the output device indicated by the −T option (default Model 37 Teletype).

1.3. Numerical parameter input. Both NROFF and TROFF accept numerical input with the appended scale indica-
tors shown in the following table, where S is the current type size in points, V is the current vertical line spacing
in basic units, and C is a nominal character width in basic units.

_ ___
Scale Number of basic units

Indicator Meaning TROFF NROFF_ ___
i Inch 432 240
c Centimeter 432×50⁄127 240×50⁄127
P Pica = 1⁄6 inch 72 240⁄6
m Em = S points 6×S C
n En = Em⁄2 3×S C, same as Em
p Point = 1⁄72 inch 6 240⁄72
u Basic unit 1 1
v Vertical line space V V

none Default, see below_ ___ 



































































In NROFF, both the em and the en are taken to be equal to the C, which is output-device dependent; common
values are 1⁄10 and 1⁄12 inch. Actual character widths in NROFF need not be all the same and constructed char-
acters such as −> (→) are often extra wide. The default scaling is ems for the horizontally-oriented requests and
functions ll, in, ti, ta, lt, po, mc, \h, and \l; Vs for the vertically-oriented requests and functions pl, wh, ch, dt,
sp, sv, ne, rt, \v, \x, and \L; p for the vs request; and u for the requests nr, if, and ie. All other requests ignore
any scale indicators. When a number register containing an already appropriately scaled number is interpolated
to provide numerical input, the unit scale indicator u may need to be appended to prevent an additional inap-
propriate default scaling. The number, N, may be specified in decimal-fraction form but the parameter finally
stored is rounded to an integer number of basic units.

- 8 -

NROFF/TROFF User’s Manual
October 11, 1976

The absolute position indicator  may be prepended to a number N to generate the distance to the vertical or hor-
izontal place N. For vertically-oriented requests and functions,  N becomes the distance in basic units from the
current vertical place on the page or in a diversion (§7.4) to the the vertical place N. For all other requests and
functions,  N becomes the distance from the current horizontal place on the input line to the horizontal place N.
For example,

.sp  3.2c

will space in the required direction to 3.2 centimeters from the top of the page.

1.4. Numerical expressions. Wherever numerical input is expected an expression involving parentheses, the arith-
metic operators +, −, ⁄, ∗, % (mod), and the logical operators <, >, <=, >=, = (or ==), & (and), : (or) may be
used. Except where controlled by parentheses, evaluation of expressions is left-to-right; there is no operator pre-
cedence. In the case of certain requests, an initial + or − is stripped and interpreted as an increment or decrement
indicator respectively. In the presence of default scaling, the desired scale indicator must be attached to every
number in an expression for which the desired and default scaling differ. For example, if the number register x
contains 2 and the current point size is 10, then

.ll (4.25i+\nxP+3)⁄2u

will set the line length to 1⁄2 the sum of 4.25 inches + 2 picas + 30 points.

1.5. Notation. Numerical parameters are indicated in this manual in two ways. ±N means that the argument may
take the forms N, +N, or −N and that the corresponding effect is to set the affected parameter to N, to increment
it by N, or to decrement it by N respectively. Plain N means that an initial algebraic sign is not an increment
indicator, but merely the sign of N. Generally, unreasonable numerical input is either ignored or truncated to a
reasonable value. For example, most requests expect to set parameters to non-negative values; exceptions are sp,
wh, ch, nr, and if. The requests ps, ft, po, vs, ls, ll, in, and lt restore the previous parameter value in the
absence of an argument.

Single character arguments are indicated by single lower case letters and one/two character arguments are indi-
cated by a pair of lower case letters. Character string arguments are indicated by multi-character mnemonics.

2. Font and Character Size Control

2.1. Character set. The TROFF character set consists of the Graphics Systems Commercial II character set plus a
Special Mathematical Font character set—each having 102 characters. These character sets are shown in the
attached Table I. All ASCII characters are included, with some on the Special Font. With three exceptions, the
ASCII characters are input as themselves, and non-ASCII characters are input in the form \(xx where xx is a two-
character name given in the attached Table II. The three ASCII exceptions are mapped as follows:

_ ___
ASCII Input Printed by TROFF

Character Name Character Name_ ___
´ acute accent ’ close quote
` grave accent ‘ open quote
− minus - hyphen_ ___ 





















The characters ´, `, and – may be input by \´, \`, and \– respectively or by their names (Table II). The ASCII
characters @, #, ", ´, `, <, >, \, {, }, ˜, ˆ, and _ exist only on the Special Font and are printed as a 1-em space if
that Font is not mounted.

NROFF understands the entire TROFF character set, but can in general print only ASCII characters, additional
characters as may be available on the output device, such characters as may be able to be constructed by over-
striking or other combination, and those that can reasonably be mapped into other printable characters. The exact
behavior is determined by a driving table prepared for each device. The characters ´, `, and _ print as them-
selves.

2.2. Fonts. The default mounted fonts are Times Roman (R), Times Italic (I), Times Bold (B), and the Special
Mathematical Font (S) on physical typesetter positions 1, 2, 3, and 4 respectively. These fonts are used in this
document. The current font, initially Roman, may be changed (among the mounted fonts) by use of the ft
request, or by imbedding at any desired point either \fx, \f(xx, or \fN where x and xx are the name of a mounted

- 9 -

NROFF/TROFF User’s Manual
October 11, 1976

font and N is a numerical font position. It is not necessary to change to the Special font; characters on that font
are automatically handled. A request for a named but not-mounted font is ignored. TROFF can be informed that
any particular font is mounted by use of the fp request. The list of known fonts is installation dependent. In the
subsequent discussion of font-related requests, F represents either a one⁄two-character font name or the numerical
font position, 1-4. The current font is available (as numerical position) in the read-only number register .f.

NROFF understands font control and normally underlines Italic characters (see §10.5).

2.3. Character size. Character point sizes available on the Graphic Systems typesetter are 6, 7, 8, 9, 10, 11, 12,
14, 16, 18, 20, 22, 24, 28, and 36. This is a range of 1⁄12 inch to 1⁄2 inch. The ps request is used to change or
restore the point size. Alternatively the point size may be changed between any two characters by imbedding a
\sN at the desired point to set the size to N, or a \s±N (1≤N≤9) to increment⁄decrement the size by N; \s0 restores
the previous size. Requested point size values that are between two valid sizes yield the larger of the two. The
current size is available in the .s register. NROFF ignores type size control.

R Re eq qu ue es st t I In ni it ti ia al l I If f N No o
F Fo or rm m V Va al lu ue e A Ar rg gu um me en nt t N No ot te es s* * E Ex xp pl la an na at ti io on n

.ps ±N 10 point previous E Point size set to ±N. Alternatively imbed \sN or \s±N. Any
positive size value may be requested; if invalid, the next larger
valid size will result, with a maximum of 36. A paired
sequence +N, −N will work because the previous requested
value is also remembered. Ignored in NROFF.

.ss N 12⁄36 em ignored E Space-character size is set to N⁄36 ems. This size is the
minimum word spacing in adjusted text. Ignored in NROFF.

.cs F N M off - P Constant character space (width) mode is set on for font F (if
mounted); the width of every character will be taken to be
N⁄36 ems. If M is absent, the em is that of the character’s
point size; if M is given, the em is M-points. All affected
characters are centered in this space, including those with an
actual width larger than this space. Special Font characters
occurring while the current font is F are also so treated. If N
is absent, the mode is turned off. The mode must be still or
again in effect when the characters are physically printed.
Ignored in NROFF.

.bd F N off - P The characters in font F will be artificially emboldened by
printing each one twice, separated by N−1 basic units. A rea-
sonable value for N is 3 when the character size is in the
vicinity of 10 points. If N is missing the embolden mode is
turned off. The column heads above were printed with
.bd I 3. The mode must be still or again in effect when the
characters are physically printed. Ignored in NROFF.

.bd S F N off - P The characters in the Special Font will be emboldened when-
ever the current font is F. This manual was printed with
.bd S B 3. The mode must be still or again in effect when the
characters are physically printed.

.ft F Roman previous E Font changed to F. Alternatively, imbed \fF. The font name
P is reserved to mean the previous font.

.fp N F R,I,B,S ignored - Font position. This is a statement that a font named F is
mounted on position N (1-4). It is a fatal error if F is not
known. The phototypesetter has four fonts physically
mounted. Each font consists of a film strip which can be

*Notes are explained at the end of the Summary and Index above.

- 10 -

NROFF/TROFF User’s Manual
October 11, 1976

mounted on a numbered quadrant of a wheel. The default
mounting sequence assumed by TROFF is R, I, B, and S on
positions 1, 2, 3 and 4.

3. Page control

Top and bottom margins are not automatically provided; it is conventional to define two macros and to set traps
for them at vertical positions 0 (top) and −N (N from the bottom). See §7 and Tutorial Examples §T2. A
pseudo-page transition onto the first page occurs either when the first break occurs or when the first non-diverted
text processing occurs. Arrangements for a trap to occur at the top of the first page must be completed before
this transition. In the following, references to the current diversion (§7.4) mean that the mechanism being
described works during both ordinary and diverted output (the former considered as the top diversion level).

The useable page width on the Graphic Systems phototypesetter is about 7.54 inches, beginning about 1⁄27 inch
from the left edge of the 8 inch wide, continuous roll paper. The physical limitations on NROFF output are
output-device dependent.

R Re eq qu ue es st t I In ni it ti ia al l I If f N No o
F Fo or rm m V Va al lu ue e A Ar rg gu um me en nt t N No ot te es s E Ex xp pl la an na at ti io on n

.pl ±N 11 in 11 in v Page length set to ±N. The internal limitation is about
75 inches in TROFF and about 136 inches in NROFF. The
current page length is available in the .p register.

.bp ±N N=1 - B*,v Begin page. The current page is ejected and a new page is
begun. If ±N is given, the new page number will be ±N.
Also see request ns.

.pn ±N N=1 ignored - Page number. The next page (when it occurs) will have the
page number ±N. A pn must occur before the initial pseudo-
page transition to effect the page number of the first page.
The current page number is in the % register.

.po ±N 0; 26⁄27 in† previous v Page offset. The current left margin is set to ±N. The TROFF
initial value provides about 1 inch of paper margin including
the physical typesetter margin of 1⁄27 inch. In TROFF the
maximum (line-length)+(page-offset) is about 7.54 inches.
See §6. The current page offset is available in the .o register.

.ne N - N=1 V D,v Need N vertical space. If the distance, D, to the next trap
position (see §7.5) is less than N, a forward vertical space of
size D occurs, which will spring the trap. If there are no
remaining traps on the page, D is the distance to the bottom of
the page. If D < V, another line could still be output and
spring the trap. In a diversion, D is the distance to the diver-
sion trap, if any, or is very large.

.mk R none internal D Mark the current vertical place in an internal register (both
associated with the current diversion level), or in register R, if
given. See rt request.

.rt ±N none internal D,v Return upward only to a marked vertical place in the current
diversion. If ±N (w.r.t. current place) is given, the place is ±N
from the top of the page or diversion or, if N is absent, to a
place marked by a previous mk. Note that the sp request
(§5.3) may be used in all cases instead of rt by spacing to the
absolute place stored in a explicit register; e. g. using the
sequence .mk Rsp  \nRu.

*The use of " ´ " as control character (instead of ".") suppresses the break function.

†Values separated by ";" are for NROFF and TROFF respectively.

- 11 -

NROFF/TROFF User’s Manual
October 11, 1976

4. Text Filling, Adjusting, and Centering

4.1. Filling and adjusting. Normally, words are collected from input text lines and assembled into a output text
line until some word doesn’t fit. An attempt is then made the hyphenate the word in effort to assemble a part of
it into the output line. The spaces between the words on the output line are then increased to spread out the line
to the current line length minus any current indent. A word is any string of characters delimited by the space
character or the beginning/end of the input line. Any adjacent pair of words that must be kept together (neither
split across output lines nor spread apart in the adjustment process) can be tied together by separating them with
the unpaddable space character "\ " (backslash-space). The adjusted word spacings are uniform in TROFF and
the minimum interword spacing can be controlled with the ss request (§2). In NROFF, they are normally nonuni-
form because of quantization to character-size spaces; however, the command line option – e causes uniform
spacing with full output device resolution. Filling, adjustment, and hyphenation (§13) can all be prevented or
controlled. The text length on the last line output is available in the .n register, and text base-line position on the
page for this line is in the nl register. The text base-line high-water mark (lowest place) on the current page is in
the .h register.

An input text line ending with . , ?, or ! is taken to be the end of a sentence, and an additional space character is
automatically provided during filling. Multiple inter-word space characters found in the input are retained, except
for trailing spaces; initial spaces also cause a break.

When filling is in effect, a \p may be imbedded or attached to a word to cause a break at the end of the word
and have the resulting output line spread out to fill the current line length.

A text input line that happens to begin with a control character can be made to not look like a control line by
prefacing it with the non-printing, zero-width filler character \&. Still another way is to specify output transla-
tion of some convenient character into the control character using tr (§10.5).

4.2. Interrupted text. The copying of a input line in nofill (non-fill) mode can be interrupted by terminating the
partial line with a \c. The next encountered input text line will be considered to be a continuation of the same
line of input text. Similarly, a word within filled text may be interrupted by terminating the word (and line) with
\c; the next encountered text will be taken as a continuation of the interrupted word. If the intervening control
lines cause a break, any partial line will be forced out along with any partial word.

R Re eq qu ue es st t I In ni it ti ia al l I If f N No o
F Fo or rm m V Va al lu ue e A Ar rg gu um me en nt t N No ot te es s E Ex xp pl la an na at ti io on n

.br - - B Break. The filling of the line currently being collected is
stopped and the line is output without adjustment. Text lines
beginning with space characters and empty text lines (blank
lines) also cause a break.

.fi fill on - B,E Fill subsequent output lines. The register .u is 1 in fill mode
and 0 in nofill mode.

.nf fill on - B,E Nofill. Subsequent output lines are neither filled nor adjusted.
Input text lines are copied directly to output lines without
regard for the current line length.

.ad c adj,both adjust E Line adjustment is begun. If fill mode is not on, adjustment
will be deferred until fill mode is back on. If the type indica-
tor c is present, the adjustment type is changed as shown in
the following table.

Indicator Adjust Type________________________________

l adjust left margin only
r adjust right margin only
c center

b or n adjust both margins
absent unchanged________________________________ 
























- 12 -

NROFF/TROFF User’s Manual
October 11, 1976

.na adjust - E Noadjust. Adjustment is turned off; the right margin will be
ragged. The adjustment type for ad is not changed. Output
line filling still occurs if fill mode is on.

.ce N off N=1 B,E Center the next N input text lines within the current (line-
length minus indent). If N=0, any residual count is cleared.
A break occurs after each of the N input lines. If the input
line is too long, it will be left adjusted.

5. Vertical Spacing

5.1. Base-line spacing. The vertical spacing (V) between the base-lines of successive output lines can be set
using the vs request with a resolution of 1⁄144 inch = 1⁄2 point in TROFF, and to the output device resolution in
NROFF. V must be large enough to accommodate the character sizes on the affected output lines. For the com-
mon type sizes (9-12 points), usual typesetting practice is to set V to 2 points greater than the point size; TROFF
default is 10-point type on a 12-point spacing (as in this document). The current V is available in the .v register.
Multiple-V line separation (e. g. double spacing) may be requested with ls.

5.2. Extra line-space. If a word contains a vertically tall construct requiring the output line containing it to have
extra vertical space before and⁄or after it, the extra-line-space function \x´N ´ can be imbedded in or attached to
that word. In this and other functions having a pair of delimiters around their parameter (here ´), the delimiter
choice is arbitrary, except that it can’t look like the continuation of a number expression for N. If N is negative,
the output line containing the word will be preceded by N extra vertical space; if N is positive, the output line
containing the word will be followed by N extra vertical space. If successive requests for extra space apply to
the same line, the maximum values are used. The most recently utilized post-line extra line-space is available in
the .a register.

5.3. Blocks of vertical space. A block of vertical space is ordinarily requested using sp, which honors the no-
space mode and which does not space past a trap. A contiguous block of vertical space may be reserved using
sv.

R Re eq qu ue es st t I In ni it ti ia al l I If f N No o
F Fo or rm m V Va al lu ue e A Ar rg gu um me en nt t N No ot te es s E Ex xp pl la an na at ti io on n

.vs N 1⁄6in;12pts previous E,p Set vertical base-line spacing size V. Transient extra vertical
space available with \x´N ´ (see above).

.ls N N=1 previous E Line spacing set to ±N. N−1 Vs (blank lines) are appended to
each output text line. Appended blank lines are omitted, if the
text or previous appended blank line reached a trap position.

.sp N - N=1V B,v Space vertically in either direction. If N is negative, the
motion is backward (upward) and is limited to the distance to
the top of the page. Forward (downward) motion is truncated
to the distance to the nearest trap. If the no-space mode is on,
no spacing occurs (see ns, and rs below).

.sv N - N=1V v Save a contiguous vertical block of size N. If the distance to
the next trap is greater than N, N vertical space is output.
No-space mode has no effect. If this distance is less than N,
no vertical space is immediately output, but N is remembered
for later output (see os). Subsequent sv requests will
overwrite any still remembered N.

.os - - - Output saved vertical space. No-space mode has no effect.
Used to finally output a block of vertical space requested by
an earlier sv request.

.ns space - D No-space mode turned on. When on, the no-space mode inhi-
bits sp requests and bp requests without a next page number.
The no-space mode is turned off when a line of output occurs,
or with rs.

- 13 -

NROFF/TROFF User’s Manual
October 11, 1976

.rs space - D Restore spacing. The no-space mode is turned off.

Blank text line. - B Causes a break and output of a blank line exactly like sp 1.

6. Line Length and Indenting

The maximum line length for fill mode may be set with ll. The indent may be set with in; an indent applicable
to only the next output line may be set with ti. The line length includes indent space but not page offset space.
The line-length minus the indent is the basis for centering with ce. The effect of ll, in, or ti is delayed, if a par-
tially collected line exists, until after that line is output. In fill mode the length of text on an output line is less
than or equal to the line length minus the indent. The current line length and indent are available in registers .l
and .i respectively. The length of three-part titles produced by tl (see §14) is independently set by lt.

R Re eq qu ue es st t I In ni it ti ia al l I If f N No o
F Fo or rm m V Va al lu ue e A Ar rg gu um me en nt t N No ot te es s E Ex xp pl la an na at ti io on n

.ll ±N 6.5 in previous E,m Line length is set to ±N. In TROFF the maximum (line-
length)+(page-offset) is about 7.54 inches.

.in ±N N=0 previous B,E,m Indent is set to ±N. The indent is prepended to each output
line.

.ti ±N - ignored B,E,m Temporary indent. The next output text line will be indented
a distance ±N with respect to the current indent. The resulting
total indent may not be negative. The current indent is not
changed.

7. Macros, Strings, Diversion, and Position Traps

7.1. Macros and strings. A macro is a named set of arbitrary lines that may be invoked by name or with a trap.
A string is a named string of characters, not including a newline character, that may be interpolated by name at
any point. Request, macro, and string names share the same name list. Macro and string names may be one or
two characters long and may usurp previously defined request, macro, or string names. Any of these entities may
be renamed with rn or removed with rm. Macros are created by de and di, and appended to by am and da; di
and da cause normal output to be stored in a macro. Strings are created by ds and appended to by as. A macro
is invoked in the same way as a request; a control line beginning .xx will interpolate the contents of macro xx.
The remainder of the line may contain up to nine arguments. The strings x and xx are interpolated at any desired
point with \∗x and \∗(xx respectively. String references and macro invocations may be nested.

7.2. Copy mode input interpretation. During the definition and extension of strings and macros (not by diversion)
the input is read in copy mode. The input is copied without interpretation except that:

• The contents of number registers indicated by \n are interpolated.
• Strings indicated by \∗ are interpolated.
• Arguments indicated by \$ are interpolated.
• Concealed newlines indicated by \(newline) are eliminated.
• Comments indicated by \" are eliminated.
• \t and \a are interpreted as ASCII horizontal tab and SOH respectively (§9).
• \\ is interpreted as \.
• \. is interpreted as ".".

These interpretations can be suppressed by prepending a \. For example, since \\ maps into a \, \\n will copy as
\n which will be interpreted as a number register indicator when the macro or string is reread.

7.3. Arguments. When a macro is invoked by name, the remainder of the line is taken to contain up to nine argu-
ments. The argument separator is the space character, and arguments may be surrounded by double-quotes to
permit imbedded space characters. Pairs of double-quotes may be imbedded in double-quoted arguments to
represent a single double-quote. If the desired arguments won’t fit on a line, a concealed newline may be used to
continue on the next line.

When a macro is invoked the input level is pushed down and any arguments available at the previous level
become unavailable until the macro is completely read and the previous level is restored. A macro’s own argu-
ments can be interpolated at any point within the macro with \$N, which interpolates the Nth argument (1≤N≤9).

- 14 -

NROFF/TROFF User’s Manual
October 11, 1976

If an invoked argument doesn’t exist, a null string results. For example, the macro xx may be defined by

.de xx \"begin definition
Today is \\$1 the \\$2.
.. \"end definition

and called by

.xx Monday 14th

to produce the text

Today is Monday the 14th.

Note that the \$ was concealed in the definition with a prepended \. The number of currently available arguments
is in the .$ register.

No arguments are available at the top (non-macro) level in this implementation. Because string referencing is
implemented as a input-level push down, no arguments are available from within a string. No arguments are
available within a trap-invoked macro.

Arguments are copied in copy mode onto a stack where they are available for reference. The mechanism does
not allow an argument to contain a direct reference to a long string (interpolated at copy time) and it is advisable
to conceal string references (with an extra \) to delay interpolation until argument reference time.

7.4. Diversions. Processed output may be diverted into a macro for purposes such as footnote processing (see
Tutorial §T5) or determining the horizontal and vertical size of some text for conditional changing of pages or
columns. A single diversion trap may be set at a specified vertical position. The number registers dn and dl
respectively contain the vertical and horizontal size of the most recently ended diversion. Processed text that is
diverted into a macro retains the vertical size of each of its lines when reread in nofill mode regardless of the
current V. Constant-spaced (cs) or emboldened (bd) text that is diverted can be reread correctly only if these
modes are again or still in effect at reread time. One way to do this is to imbed in the diversion the appropriate
cs or bd requests with the transparent mechanism described in §10.6.

Diversions may be nested and certain parameters and registers are associated with the current diversion level (the
top non-diversion level may be thought of as the 0th diversion level). These are the diversion trap and associated
macro, no-space mode, the internally-saved marked place (see mk and rt), the current vertical place (.d register),
the current high-water text base-line (.h register), and the current diversion name (.z register).

7.5. Traps. Three types of trap mechanisms are available—page traps, a diversion trap, and an input-line-count
trap. Macro-invocation traps may be planted using wh at any page position including the top. This trap position
may be changed using ch. Trap positions at or below the bottom of the page have no effect unless or until
moved to within the page or rendered effective by an increase in page length. Two traps may be planted at the
same position only by first planting them at different positions and then moving one of the traps; the first planted
trap will conceal the second unless and until the first one is moved (see Tutorial Examples §T5). If the first one
is moved back, it again conceals the second trap. The macro associated with a page trap is automatically
invoked when a line of text is output whose vertical size reaches or sweeps past the trap position. Reaching the
bottom of a page springs the top-of-page trap, if any, provided there is a next page. The distance to the next trap
position is available in the .t register; if there are no traps between the current position and the bottom of the
page, the distance returned is the distance to the page bottom.

A macro-invocation trap effective in the current diversion may be planted using dt. The .t register works in a
diversion; if there is no subsequent trap a large distance is returned. For a description of input-line-count traps,
see it below.

R Re eq qu ue es st t I In ni it ti ia al l I If f N No o
F Fo or rm m V Va al lu ue e A Ar rg gu um me en nt t N No ot te es s E Ex xp pl la an na at ti io on n

.de xx yy - .yy=.. - Define or redefine the macro xx. The contents of the macro
begin on the next input line. Input lines are copied in copy
mode until the definition is terminated by a line beginning
with .yy, whereupon the macro yy is called. In the absence of
yy, the definition is terminated by a line beginning with "..".

- 15 -

NROFF/TROFF User’s Manual
October 11, 1976

A macro may contain de requests provided the terminating
macros differ or the contained definition terminator is con-
cealed. ".." can be concealed as \\.. which will copy as \.. and
be reread as "..".

.am xx yy - .yy=.. - Append to macro (append version of de).

.ds xx string - ignored - Define a string xx containing string. Any initial double-quote
in string is stripped off to permit initial blanks.

.as xx string - ignored - Append string to string xx (append version of ds).

.rm xx - ignored - Remove request, macro, or string. The name xx is removed
from the name list and any related storage space is freed.
Subsequent references will have no effect.

.rn xx yy - ignored - Rename request, macro, or string xx to yy. If yy exists, it is
first removed.

.di xx - end D Divert output to macro xx. Normal text processing occurs dur-
ing diversion except that page offsetting is not done. The
diversion ends when the request di or da is encountered
without an argument; extraneous requests of this type should
not appear when nested diversions are being used.

.da xx - end D Divert, appending to xx (append version of di).

.wh N xx - - v Install a trap to invoke xx at page position N; a negative N
will be interpreted with respect to the page bottom. Any
macro previously planted at N is replaced by xx. A zero N
refers to the top of a page. In the absence of xx, the first
found trap at N, if any, is removed.

.ch xx N - - v Change the trap position for macro xx to be N. In the absence
of N, the trap, if any, is removed.

.dt N xx - off D,v Install a diversion trap at position N in the current diversion to
invoke macro xx. Another dt will redefine the diversion trap.
If no arguments are given, the diversion trap is removed.

.it N xx - off E Set an input-line-count trap to invoke the macro xx after N
lines of text input have been read (control or request lines
don’t count). The text may be in-line text or text interpolated
by inline or trap-invoked macros.

.em xx none none - The macro xx will be invoked when all input has ended. The
effect is the same as if the contents of xx had been at the end
of the last file processed.

8. Number Registers

A variety of parameters are available to the user as predefined, named number registers (see Summary and Index,
page 7). In addition, the user may define his own named registers. Register names are one or two characters
long and do not conflict with request, macro, or string names. Except for certain predefined read-only registers, a
number register can be read, written, automatically incremented or decremented, and interpolated into the input in
a variety of formats. One common use of user-defined registers is to automatically number sections, paragraphs,
lines, etc. A number register may be used any time numerical input is expected or desired and may be used in
numerical expressions (§1.4).

Number registers are created and modified using nr, which specifies the name, numerical value, and the auto-
increment size. Registers are also modified, if accessed with an auto-incrementing sequence. If the registers x
and xx both contain N and have the auto-increment size M, the following access sequences have the effect shown:

- 16 -

NROFF/TROFF User’s Manual
October 11, 1976

_ ___
Effect on Value

Sequence Register Interpolated_ ___
\nx none N
\n(xx none N
\n+x x incremented by M N+M
\n– x x decremented by M N– M
\n+(xx xx incremented by M N+M
\n– (xx xx decremented by M N– M_ ___ 












































When interpolated, a number register is converted to decimal (default), decimal with leading zeros, lower-case
Roman, upper-case Roman, lower-case sequential alphabetic, or upper-case sequential alphabetic according to the
format specified by af.

R Re eq qu ue es st t I In ni it ti ia al l I If f N No o
F Fo or rm m V Va al lu ue e A Ar rg gu um me en nt t N No ot te es s E Ex xp pl la an na at ti io on n

.nr R ±N M - u The number register R is assigned the value ±N with respect to the pre-
vious value, if any. The increment for auto-incrementing is
set to M.

.af R c arabic - - Assign format c to register R. The available formats are:

_ ______________________________________
Numbering

Format Sequence_ ______________________________________
1 0,1,2,3,4,5,...

001 000,001,002,003,004,005,...
i 0,i,ii,iii,iv,v,...
I 0,I,II,III,IV,V,...
a 0,a,b,c,...,z,aa,ab,...,zz,aaa,...
A 0,A,B,C,...,Z,AA,AB,...,ZZ,AAA,..._ ______________________________________ 

































An arabic format having N digits specifies a field width of N
digits (example 2 above). The read-only registers and the
width function (§11.2) are always arabic.

.rr R - ignored - Remove register R. If many registers are being created
dynamically, it may become necessary to remove no longer
used registers to recapture internal storage space for newer
registers.

9. Tabs, Leaders, and Fields

9.1. Tabs and leaders. The ASCII horizontal tab character and the ASCII SOH (hereafter known as the leader
character) can both be used to generate either horizontal motion or a string of repeated characters. The length of
the generated entity is governed by internal tab stops specifiable with ta. The default difference is that tabs gen-
erate motion and leaders generate a string of periods; tc and lc offer the choice of repeated character or motion.
There are three types of internal tab stops—left adjusting, right adjusting, and centering. In the following table:
D is the distance from the current position on the input line (where a tab or leader was found) to the next tab
stop; next-string consists of the input characters following the tab (or leader) up to the next tab (or leader) or end
of line; and W is the width of next-string.

_ __
Tab Length of motion or Location of
type repeated characters next-string_ __
Left D Following D

Right D– W Right adjusted within D
Centered D– W⁄2 Centered on right end of D_ __ 




























- 17 -

NROFF/TROFF User’s Manual
October 11, 1976

The length of generated motion is allowed to be negative, but that of a repeated character string cannot be.
Repeated character strings contain an integer number of characters, and any residual distance is prepended as
motion. Tabs or leaders found after the last tab stop are ignored, but may be used as next-string terminators.

Tabs and leaders are not interpreted in copy mode. \t and \a always generate a non-interpreted tab and leader
respectively, and are equivalent to actual tabs and leaders in copy mode.

9.2. Fields. A field is contained between a pair of field delimiter characters, and consists of sub-strings separated
by padding indicator characters. The field length is the distance on the input line from the position where the
field begins to the next tab stop. The difference between the total length of all the sub-strings and the field
length is incorporated as horizontal padding space that is divided among the indicated padding places. The incor-
porated padding is allowed to be negative. For example, if the field delimiter is # and the padding indicator is ˆ,
#ˆxxxˆright # specifies a right-adjusted string with the string xxx centered in the remaining space.

R Re eq qu ue es st t I In ni it ti ia al l I If f N No o
F Fo or rm m V Va al lu ue e A Ar rg gu um me en nt t N No ot te es s E Ex xp pl la an na at ti io on n

.ta Nt ... 0.8; 0.5in none E,m Set tab stops and types. t=R, right adjusting; t=C, centering;
t absent, left adjusting. TROFF tab stops are preset every
0.5in.; NROFF every 0.8in. The stop values are separated by
spaces, and a value preceded by + is treated as an increment
to the previous stop value.

.tc c none none E The tab repetition character becomes c, or is removed specify-
ing motion.

.lc c . none E The leader repetition character becomes c, or is removed
specifying motion.

.fc a b off off - The field delimiter is set to a; the padding indicator is set to
the space character or to b, if given. In the absence of argu-
ments the field mechanism is turned off.

10. Input and Output Conventions and Character Translations

10.1. Input character translations. Ways of inputting the graphic character set were discussed in §2.1. The
ASCII control characters horizontal tab (§9.1), SOH (§9.1), and backspace (§10.3) are discussed elsewhere. The
newline delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL are accepted, and may be used as del-
imiters or translated into a graphic with tr (§10.5). All others are ignored.

The escape character \ introduces escape sequences—causes the following character to mean another character, or
to indicate some function. A complete list of such sequences is given in the Summary and Index on page 6. \
should not be confused with the ASCII control character ESC of the same name. The escape character \ can be
input with the sequence \\. The escape character can be changed with ec, and all that has been said about the
default \ becomes true for the new escape character. \e can be used to print whatever the current escape character
is. If necessary or convenient, the escape mechanism may be turned off with eo, and restored with ec.

R Re eq qu ue es st t I In ni it ti ia al l I If f N No o
F Fo or rm m V Va al lu ue e A Ar rg gu um me en nt t N No ot te es s E Ex xp pl la an na at ti io on n

.ec c \ \ - Set escape character to \, or to c, if given.

.eo on - - Turn escape mechanism off.

10.2. Ligatures. Five ligatures are available in the current TROFF character set — fi, fl, ff, ffi, and ffl. They may
be input (even in NROFF) by \(fi, \(fl, \(ff, \(Fi, and \(Fl respectively. The ligature mode is normally on in
TROFF, and automatically invokes ligatures during input.

R Re eq qu ue es st t I In ni it ti ia al l I If f N No o
F Fo or rm m V Va al lu ue e A Ar rg gu um me en nt t N No ot te es s E Ex xp pl la an na at ti io on n

.lg N off; on on - Ligature mode is turned on if N is absent or non-zero, and
turned off if N=0. If N=2, only the two-character ligatures are
automatically invoked. Ligature mode is inhibited for request,

- 18 -

NROFF/TROFF User’s Manual
October 11, 1976

macro, string, register, or file names, and in copy mode. No
effect in NROFF.

10.3. Backspacing, underlining, overstriking, etc. Unless in copy mode, the ASCII backspace character is replaced
by a backward horizontal motion having the width of the space character. Underlining as a form of line-drawing
is discussed in §12.4. A generalized overstriking function is described in §12.1.

NROFF automatically underlines characters in the underline font, specifiable with uf, normally that on font posi-
tion 2 (normally Times Italic, see §2.2). In addition to ft and \fF, the underline font may be selected by ul and
cu. Underlining is restricted to an output-device-dependent subset of reasonable characters.

R Re eq qu ue es st t I In ni it ti ia al l I If f N No o
F Fo or rm m V Va al lu ue e A Ar rg gu um me en nt t N No ot te es s E Ex xp pl la an na at ti io on n

.ul N off N=1 E Underline in NROFF (italicize in TROFF) the next N input text
lines. Actually, switch to underline font, saving the current
font for later restoration; other font changes within the span of
a ul will take effect, but the restoration will undo the last
change. Output generated by tl (§14) is affected by the font
change, but does not decrement N. If N>1, there is the risk
that a trap interpolated macro may provide text lines within
the span; environment switching can prevent this.

.cu N off N=1 E A variant of ul that causes every character to be underlined in
NROFF. Identical to ul in TROFF.

.uf F Italic Italic - Underline font set to F. In NROFF, F may not be on position
1 (initially Times Roman).

10.4. Control characters. Both the control character . and the no-break control character ´ may be changed, if
desired. Such a change must be compatible with the design of any macros used in the span of the change, and
particularly of any trap-invoked macros.

R Re eq qu ue es st t I In ni it ti ia al l I If f N No o
F Fo or rm m V Va al lu ue e A Ar rg gu um me en nt t N No ot te es s E Ex xp pl la an na at ti io on n

.cc c . . E The basic control character is set to c, or reset to ".".

.c2 c ´ ´ E The nobreak control character is set to c, or reset to "´".

10.5. Output translation. One character can be made a stand-in for another character using tr. All text process-
ing (e. g. character comparisons) takes place with the input (stand-in) character which appears to have the width
of the final character. The graphic translation occurs at the moment of output (including diversion).

R Re eq qu ue es st t I In ni it ti ia al l I If f N No o
F Fo or rm m V Va al lu ue e A Ar rg gu um me en nt t N No ot te es s E Ex xp pl la an na at ti io on n

.tr abcd.... none - O Translate a into b, c into d, etc. If an odd number of charac-
ters is given, the last one will be mapped into the space char-
acter. To be consistent, a particular translation must stay in
effect from input to output time.

10.6. Transparent throughput. An input line beginning with a \! is read in copy mode and transparently output
(without the initial \!); the text processor is otherwise unaware of the line’s presence. This mechanism may be
used to pass control information to a post-processor or to imbed control lines in a macro created by a diversion.

10.7. Comments and concealed newlines. An uncomfortably long input line that must stay one line (e. g. a string
definition, or nofilled text) can be split into many physical lines by ending all but the last one with the escape \.
The sequence \(newline) is always ignored—except in a comment. Comments may be imbedded at the end of
any line by prefacing them with \". The newline at the end of a comment cannot be concealed. A line begin-
ning with \" will appear as a blank line and behave like .sp 1; a comment can be on a line by itself by beginning
the line with .\".

- 19 -

NROFF/TROFF User’s Manual
October 11, 1976

11. Local Horizontal and Vertical Motions, and the Width Function

11.1. Local Motions. The functions \v´N ´ and \h´N ´ can be used for local vertical and horizontal motion respec-
tively. The distance N may be negative; the positive directions are rightward and downward. A local motion is
one contained within a line. To avoid unexpected vertical dislocations, it is necessary that the net vertical local
motion within a word in filled text and otherwise within a line balance to zero. The above and certain other
escape sequences providing local motion are summarized in the following table.

_ __
Vertical Effect in Horizontal Effect in

Local Motion TROFF NROFF Local Motion TROFF NROFF_ __

\v´N ´ Move distance N \h´N ´ Move distance N
_ ____________________________________ \(space) Unpaddable space-size space

\u 1⁄2 em up 1⁄2 line up \0 Digit-size space
\d 1⁄2 em down 1⁄2 line down _ _______________________________________

\r 1 em up 1 line up \  1⁄6 em space ignored
\ˆ 1⁄12 em space ignored

_ __ 


















































































As an example, E2 could be generated by the sequence E\s– 2\v´– 0.4m´2\v´0.4m´\s+2; it should be noted in this
example that the 0.4 em vertical motions are at the smaller size.

11.2. Width Function. The width function \w´string ´ generates the numerical width of string (in basic units).
Size and font changes may be safely imbedded in string, and will not affect the current environment. For exam-
ple, .ti – \w´1. ´u could be used to temporarily indent leftward a distance equal to the size of the string "1. ".

The width function also sets three number registers. The registers st and sb are set respectively to the highest
and lowest extent of string relative to the baseline; then, for example, the total height of the string is
\n(stu– \n(sbu. In TROFF the number register ct is set to a value between 0 and 3: 0 means that all of the char-
acters in string were short lower case characters without descenders (like e); 1 means that at least one character
has a descender (like y); 2 means that at least one character is tall (like H); and 3 means that both tall characters
and characters with descenders are present.

11.3. Mark horizontal place. The escape sequence \kx will cause the current horizontal position in the input line
to be stored in register x. As an example, the construction \kxword \h´  \nxu+2u´word will embolden word by
backing up to almost its beginning and overprinting it, resulting in word word.

12. Overstrike, Bracket, Line-drawing, and Zero-width Functions

12.1. Overstriking. Automatically centered overstriking of up to nine characters is provided by the overstrike
function \o´string ´. The characters in string overprinted with centers aligned; the total width is that of the widest
character. string should not contain local vertical motion. As examples, \o´e\´´ produces é, and \o´\(mo\(sl´ pro-
duces ∈ ⁄ .

12.2. Zero-width characters. The function \zc will output c without spacing over it, and can be used to produce
left-aligned overstruck combinations. As examples, \z\(ci\(pl will produce +, and \(br\z\(rn\(ul\(br will produce
the smallest possible constructed box  _ .

12.3. Large Brackets. The Special Mathematical Font contains a number of bracket construction pieces
(          ) that can be combined into various bracket styles. The function \b´string ´ may be used
to pile up vertically the characters in string (the first character on top and the last at the bottom); the characters
are vertically separated by 1 em and the total pile is centered 1⁄2 em above the current baseline (1⁄2 line in

NROFF). For example, \b´ \(lc\(lf ´E\  \b´ \(rc\(rf ´ \x´ – 0.5m´ \x´0.5m´ produces 
E 

.

12.4. Line drawing. The function \ l ´Nc ´ will draw a string of repeated c ’s towards the right for a distance N.
(\l is \(lower case L). If c looks like a continuation of an expression for N, it may insulated from N with a \&.
If c is not specified, the _ (baseline rule) is used (underline character in NROFF). If N is negative, a backward
horizontal motion of size N is made before drawing the string. Any space resulting from N ⁄(size of c) having a
remainder is put at the beginning (left end) of the string. In the case of characters that are designed to be con-
nected such as baseline-rule _ , underrule _ , and root-en  , the remainder space is covered by over-lapping. If N

- 20 -

NROFF/TROFF User’s Manual
October 11, 1976

is less than the width of c, a single c is centered on a distance N. As an example, a macro to underscore a string
can be written

.de us
\\$1\ l ´  0\(ul´
..

or one to draw a box around a string

.de bx
\(br\  \\$1\  \(br\ l ´  0\(rn´\ l ´  0\(ul´
..

such that

.ul "underlined words"

and

.bx "words in a box"

yield underlined words_ ______________ and words in a box    _ _____________.

The function \L´ Nc ´ will draw a vertical line consisting of the (optional) character c stacked vertically apart 1 em
(1 line in NROFF), with the first two characters overlapped, if necessary, to form a continuous line. The default
character is the box rule  (\(br); the other suitable character is the bold vertical  (\(bv). The line is begun
without any initial motion relative to the current base line. A positive N specifies a line drawn downward and a
negative N specifies a line drawn upward. After the line is drawn no compensating motions are made; the instan-
taneous baseline is at the end of the line.

The horizontal and vertical line drawing functions may be used in combination to produce large boxes. The
zero-width box-rule and the 1⁄2-em wide underrule were designed to form corners when using 1-em vertical spac-
ings. For example the macro

.de eb

.sp – 1 \"compensate for next automatic base-line spacing

.nf \"avoid possibly overflowing word buffer
\h´– .5n´\L´  \\nau– 1´\l´\\n(.lu+1n\(ul´\L´–  \\nau+1´\l´  0u– .5n\(ul´ \"draw box
.fi
..

will draw a box around some text whose beginning vertical place was saved in number register a (e. g. using
.mk a) as done for this paragraph.













_ __














 _ __

13. Hyphenation.

The automatic hyphenation may be switched off and on. When switched on with hy, several variants may be set.
A hyphenation indicator character may be imbedded in a word to specify desired hyphenation points, or may be
prepended to suppress hyphenation. In addition, the user may specify a small exception word list.

Only words that consist of a central alphabetic string surrounded by (usually null) non-alphabetic strings are con-
sidered candidates for automatic hyphenation. Words that were input containing hyphens (minus), em-dashes
(\(em), or hyphenation indicator characters—such as mother-in-law—are always subject to splitting after those
characters, whether or not automatic hyphenation is on or off.

R Re eq qu ue es st t I In ni it ti ia al l I If f N No o
F Fo or rm m V Va al lu ue e A Ar rg gu um me en nt t N No ot te es s E Ex xp pl la an na at ti io on n

.nh hyphenate - E Automatic hyphenation is turned off.

.hyN on,N=1 on,N=1 E Automatic hyphenation is turned on for N ≥1, or off for N= 0.
If N= 2, last lines (ones that will cause a trap) are not
hyphenated. For N= 4 and 8, the last and first two characters
respectively of a word are not split off. These values are addi-
tive; i. e. N= 14 will invoke all three restrictions.

- 21 -

NROFF/TROFF User’s Manual
October 11, 1976

.hc c \% \% E Hyphenation indicator character is set to c or to the default
\%. The indicator does not appear in the output.

.hw word1 ... ignored - Specify hyphenation points in words with imbedded minus signs. Ver-
sions of a word with terminal s are implied; i. e. dig– it
implies dig– its. This list is examined initially and after each
suffix stripping. The space available is small—about 128
characters.

14. Three Part Titles.

The titling function tl provides for automatic placement of three fields at the left, center, and right of a line with
a title-length specifiable with lt. tl may be used anywhere, and is independent of the normal text collecting pro-
cess. A common use is in header and footer macros.

R Re eq qu ue es st t I In ni it ti ia al l I If f N No o
F Fo or rm m V Va al lu ue e A Ar rg gu um me en nt t N No ot te es s E Ex xp pl la an na at ti io on n

.tl ´left ´center ´right ´ - - The strings left, center, and right are respectively left-adjusted,
centered, and right-adjusted in the current title-length. Any of
the strings may be empty, and overlapping is permitted. If the
page-number character (initially %) is found within any of the
fields it is replaced by the current page number having the for-
mat assigned to register %. Any character may be used as the
string delimiter.

.pc c % off - The page number character is set to c, or removed. The
page-number register remains %.

.lt ±N 6.5 in previous E,m Length of title set to ±N. The line-length and the title-length
are independent. Indents do not apply to titles; page-offsets
do.

15. Output Line Numbering.

Automatic sequence numbering of output lines may be requested with nm. When in effect, a three-digit,
arabic number plus a digit-space is prepended to output text lines. The text lines are thus offset by four

3 digit-spaces, and otherwise retain their line length; a reduction in line length may be desired to keep the
right margin aligned with an earlier margin. Blank lines, other vertical spaces, and lines generated by tl are
not numbered. Numbering can be temporarily suspended with nn, or with an .nm followed by a later

6 .nm +0. In addition, a line number indent I, and the number-text separation S may be specified in digit-
spaces. Further, it can be specified that only those line numbers that are multiples of some number M are to
be printed (the others will appear as blank number fields).

R Re eq qu ue es st t I In ni it ti ia al l I If f N No o
F Fo or rm m V Va al lu ue e A Ar rg gu um me en nt t N No ot te es s E Ex xp pl la an na at ti io on n

.nm ±N M S I off E Line number mode. If ±N is given, line numbering is turned
on, and the next output line numbered is numbered ±N.
Default values are M= 1, S= 1, and I= 0. Parameters
corresponding to missing arguments are unaffected; a non-
numeric argument is considered missing. In the absence of all
arguments, numbering is turned off; the next line number is
preserved for possible further use in number register ln.

.nn N - N=1 E The next N text output lines are not numbered.

9 As an example, the paragraph portions of this section are numbered with M= 3: .nm 1 3 was placed at the
beginning; .nm was placed at the end of the first paragraph; and .nm +0 was placed in front of this para-
graph; and .nm finally placed at the end. Line lengths were also changed (by \w´0000´u) to keep the right

12 side aligned. Another example is .nm +5 5 x 3 which turns on numbering with the line number of the next
line to be 5 greater than the last numbered line, with M= 5, with spacing S untouched, and with the indent I

- 22 -

NROFF/TROFF User’s Manual
October 11, 1976

set to 3.

16. Conditional Acceptance of Input

In the following, c is a one-character, built-in condition name, ! signifies not, N is a numerical expression,
string1 and string2 are strings delimited by any non-blank, non-numeric character not in the strings, and anything
represents what is conditionally accepted.

R Re eq qu ue es st t I In ni it ti ia al l I If f N No o
F Fo or rm m V Va al lu ue e A Ar rg gu um me en nt t N No ot te es s E Ex xp pl la an na at ti io on n

.if c anything - - If condition c true, accept anything as input; in multi-line case
use \{anything \}.

.if !c anything - - If condition c false, accept anything.

.if N anything- u If expression N > 0, accept anything.

.if !N anything - u If expression N ≤ 0, accept anything.

.if ´string1 ´string2 ´ anything - If string1 identical to string2, accept anything.

.if ! ´string1 ´string2 ´ anything - If string1 not identical to string2, accept anything.

.ie c anything - u If portion of if-else; all above forms (like if).

.el anything - - Else portion of if-else.

The built-in condition names are:

_ ____________________________________
Condition

Name True If_ ____________________________________
o Current page number is odd
e Current page number is even
t Formatter is TROFF
n Formatter is NROFF_ ____________________________________ 
























If the condition c is true, or if the number N is greater than zero, or if the strings compare identically (including
motions and character size and font), anything is accepted as input. If a ! precedes the condition, number, or
string comparison, the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of anything are skipped over. The anything can be either a
single input line (text, macro, or whatever) or a number of input lines. In the multi-line case, the first line must
begin with a left delimiter \{ and the last line must end with a right delimiter \}.

The request ie (if-else) is identical to if except that the acceptance state is remembered. A subsequent and
matching el (else) request then uses the reverse sense of that state. ie - el pairs may be nested.

Some examples are:

.if e .tl ´ Even Page %´´´

which outputs a title if the page number is even; and

.ie \n%>1 \{\
´sp 0.5i
.tl ´ Page %´´´
´sp  1.2i \}
.el .sp  2.5i

which treats page 1 differently from other pages.

17. Environment Switching.

A number of the parameters that control the text processing are gathered together into an environment, which can
be switched by the user. The environment parameters are those associated with requests noting E in their Notes
column; in addition, partially collected lines and words are in the environment. Everything else is global;

- 23 -

NROFF/TROFF User’s Manual
October 11, 1976

examples are page-oriented parameters, diversion-oriented parameters, number registers, and macro and string
definitions. All environments are initialized with default parameter values.

R Re eq qu ue es st t I In ni it ti ia al l I If f N No o
F Fo or rm m V Va al lu ue e A Ar rg gu um me en nt t N No ot te es s E Ex xp pl la an na at ti io on n

.ev N N=0 previous - Environment switched to environment 0≤N≤2. Switching is
done in push-down fashion so that restoring a previous
environment must be done with .ev rather than specific refer-
ence.

18. Insertions from the Standard Input

The input can be temporarily switched to the system standard input with rd, which will switch back when two
newlines in a row are found (the extra blank line is not used). This mechanism is intended for insertions in
form-letter-like documentation. On UNIX, the standard input can be the user’s keyboard, a pipe, or a file.

R Re eq qu ue es st t I In ni it ti ia al l I If f N No o
F Fo or rm m V Va al lu ue e A Ar rg gu um me en nt t N No ot te es s E Ex xp pl la an na at ti io on n

.rd prompt - prompt=BEL - Read insertion from the standard input until two newlines in a
row are found. If the standard input is the user’s keyboard,
prompt (or a BEL) is written onto the user’s terminal. rd
behaves like a macro, and arguments may be placed after
prompt.

.ex - - - Exit from NROFF⁄TROFF. Text processing is terminated
exactly as if all input had ended.

If insertions are to be taken from the terminal keyboard while output is being printed on the terminal, the com-
mand line option – q will turn off the echoing of keyboard input and prompt only with BEL. The regular input
and insertion input cannot simultaneously come from the standard input.

As an example, multiple copies of a form letter may be prepared by entering the insertions for all the copies in
one file to be used as the standard input, and causing the file containing the letter to reinvoke itself using nx
(§19); the process would ultimately be ended by an ex in the insertion file.

19. Input⁄Output File Switching

R Re eq qu ue es st t I In ni it ti ia al l I If f N No o
F Fo or rm m V Va al lu ue e A Ar rg gu um me en nt t N No ot te es s E Ex xp pl la an na at ti io on n

.so filename - - Switch source file. The top input (file reading) level is
switched to filename. The effect of an so encountered in a
macro is not felt until the input level returns to the file level.
When the new file ends, input is again taken from the original
file. so’s may be nested.

.nx filename end-of-file - Next file is filename. The current file is considered ended, and
the input is immediately switched to filename.

.pi program - - Pipe output to program (NROFF only). This request must
occur before any printing occurs. No arguments are transmit-
ted to program.

20. Miscellaneous

R Re eq qu ue es st t I In ni it ti ia al l I If f N No o
F Fo or rm m V Va al lu ue e A Ar rg gu um me en nt t N No ot te es s E Ex xp pl la an na at ti io on n

.mc c N - off E,m Specifies that a margin character c appear a distance N to the 
right of the right margin after each non-empty text line (except 
those produced by tl). If the output line is too-long (as can 
happen in nofill mode) the character will be appended to the 

- 24 -

NROFF/TROFF User’s Manual
October 11, 1976

line. If N is not given, the previous N is used; the initial N is 
0.2 inches in NROFF and 1 em in TROFF. The margin charac- 
ter used with this paragraph was a 12-point box-rule. 

.tm string - newline - After skipping initial blanks, string (rest of the line) is read in
copy mode and written on the user’s terminal.

.ig yy - .yy=.. - Ignore input lines. ig behaves exactly like de (§7) except that
the input is discarded. The input is read in copy mode, and
any auto-incremented registers will be affected.

.pm t - all - Print macros. The names and sizes of all of the defined mac-
ros and strings are printed on the user’s terminal; if t is given,
only the total of the sizes is printed. The sizes is given in
blocks of 128 characters.

.fl - - B Flush output buffer. Used in interactive debugging to force
output.

21. Output and Error Messages.

The output from tm, pm, and the prompt from rd, as well as various error messages are written onto UNIX’s
standard message output. The latter is different from the standard output, where NROFF formatted output goes.
By default, both are written onto the user’s terminal, but they can be independently redirected.

Various error conditions may occur during the operation of NROFF and TROFF. Certain less serious errors hav-
ing only local impact do not cause processing to terminate. Two examples are word overflow, caused by a word
that is too large to fit into the word buffer (in fill mode), and line overflow, caused by an output line that grew
too large to fit in the line buffer; in both cases, a message is printed, the offending excess is discarded, and the
affected word or line is marked at the point of truncation with a ∗ in NROFF and a in TROFF. The philosophy
is to continue processing, if possible, on the grounds that output useful for debugging may be produced. If a
serious error occurs, processing terminates, and an appropriate message is printed. Examples are the inability to
create, read, or write files, and the exceeding of certain internal limits that make future output unlikely to be use-
ful.

- 25 -

NROFF/TROFF User’s Manual
October 11, 1976

TUTORIAL EXAMPLES

T1. Introduction

Although NROFF and TROFF have by design a syntax
reminiscent of earlier text processors* with the intent
of easing their use, it is almost always necessary to
prepare at least a small set of macro definitions to
describe most documents. Such common formatting
needs as page margins and footnotes are deliberately
not built into NROFF and TROFF. Instead, the macro
and string definition, number register, diversion,
environment switching, page-position trap, and condi-
tional input mechanisms provide the basis for user-
defined implementations.

The examples to be discussed are intended to be use-
ful and somewhat realistic, but won’t necessarily
cover all relevant contingencies. Explicit numerical
parameters are used in the examples to make them
easier to read and to illustrate typical values. In
many cases, number registers would really be used to
reduce the number of places where numerical infor-
mation is kept, and to concentrate conditional parame-
ter initialization like that which depends on whether
TROFF or NROFF is being used.

T2. Page Margins

As discussed in §3, header and footer macros are
usually defined to describe the top and bottom page
margin areas respectively. A trap is planted at page
position 0 for the header, and at – N (N from the page
bottom) for the footer. The simplest such definitions
might be

.de hd \"define header
´sp 1i
.. \"end definition
.de fo \"define footer
´bp
.. \"end definition
.wh 0 hd
.wh – 1i fo

which provide blank 1 inch top and bottom margins.
The header will occur on the first page, only if the
definition and trap exist prior to the initial pseudo-
page transition (§3). In fill mode, the output line that
springs the footer trap was typically forced out

*For example: P. A. Crisman, Ed., The Compatible Time-Sharing
System, MIT Press, 1965, Section AH9.01 (Description of
RUNOFF program on MIT’s CTSS system).

because some part or whole word didn’t fit on it. If
anything in the footer and header that follows causes
a break, that word or part word will be forced out. In
this and other examples, requests like bp and sp that
normally cause breaks are invoked using the no-break
control character ´ to avoid this. When the
header⁄footer design contains material requiring
independent text processing, the environment may be
switched, avoiding most interaction with the running
text.

A more realistic example would be

.de hd \"header

.if t .tl ´ \(rn´´\(rn´ \"troff cut mark

.if \\n%>1 \{\
´sp  0.5i– 1 \"tl base at 0.5i
.tl ´´– % – ´´ \"centered page number
.ps \"restore size
.ft \"restore font
.vs \} \"restore vs
´sp  1.0i \"space to 1.0i
.ns \"turn on no-space mode
..
.de fo \"footer
.ps 10 \"set footer⁄header size
.ft R \"set font
.vs 12p \"set base-line spacing
.if \\n%=1 \{\
´sp  \\n(.pu– 0.5i– 1 \"tl base 0.5i up
.tl ´´– % – ´´ \} \"first page number
´bp
..
.wh 0 hd
.wh – 1i fo

which sets the size, font, and base-line spacing for the
header⁄footer material, and ultimately restores them.
The material in this case is a page number at the bot-
tom of the first page and at the top of the remaining
pages. If TROFF is used, a cut mark is drawn in the
form of root-en’s at each margin. The sp’s refer to
absolute positions to avoid dependence on the base-
line spacing. Another reason for this in the footer is
that the footer is invoked by printing a line whose
vertical spacing swept past the trap position by possi-
bly as much as the base-line spacing. The no-space
mode is turned on at the end of hd to render ineffec-
tive accidental occurrences of sp at the top of the run-
ning text.

- 26 -

NROFF/TROFF User’s Manual
October 11, 1976

The above method of restoring size, font, etc. presup-
poses that such requests (that set previous value) are
not used in the running text. A better scheme is save
and restore both the current and previous values as
shown for size in the following:

.de fo

.nr s1 \\n(.s \"current size

.ps

.nr s2 \\n(.s \"previous size

. --- \"rest of footer

..

.de hd

. --- \"header stuff

.ps \\n(s2 \"restore previous size

.ps \\n(s1 \"restore current size

..

Page numbers may be printed in the bottom margin
by a separate macro triggered during the footer’s page
ejection:

.de bn \"bottom number

.tl ´´– % – ´´ \"centered page number

..

.wh – 0.5i– 1v bn \"tl base 0.5i up

T3. Paragraphs and Headings

The housekeeping associated with starting a new
paragraph should be collected in a paragraph macro
that, for example, does the desired preparagraph spac-
ing, forces the correct font, size, base-line spacing,
and indent, checks that enough space remains for
more than one line, and requests a temporary indent.

.de pg \"paragraph

.br \"break

.ft R \"force font,

.ps 10 \"size,

.vs 12p \"spacing,

.in 0 \"and indent

.sp 0.4 \"prespace

.ne 1+\\n(.Vu \"want more than 1 line

.ti 0.2i \"temp indent

..

The first break in pg will force out any previous par-
tial lines, and must occur before the vs. The forcing
of font, etc. is partly a defense against prior error and
partly to permit things like section heading macros to
set parameters only once. The prespacing parameter
is suitable for TROFF; a larger space, at least as big
as the output device vertical resolution, would be
more suitable in NROFF. The choice of remaining
space to test for in the ne is the smallest amount
greater than one line (the .V is the available vertical
resolution).

A macro to automatically number section headings
might look like:

.de sc \"section

. --- \"force font, etc.

.sp 0.4 \"prespace

.ne 2.4+\\n(.Vu \"want 2.4+ lines

.fi
\\n+S.
..
.nr S 0 1 \"init S

The usage is .sc, followed by the section heading text,
followed by .pg. The ne test value includes one line
of heading, 0.4 line in the following pg, and one line
of the paragraph text. A word consisting of the next
section number and a period is produced to begin the
heading line. The format of the number may be set
by af (§8).

Another common form is the labeled, indented para-
graph, where the label protrudes left into the indent
space.

.de lp \"labeled paragraph

.pg

.in 0.5i \"paragraph indent

.ta 0.2i 0.5i \"label, paragraph

.ti 0
\t\\$1\t\c \"flow into paragraph
..

The intended usage is ".lp label "; label will begin at
0.2 inch, and cannot exceed a length of 0.3 inch
without intruding into the paragraph. The label could
be right adjusted against 0.4 inch by setting the tabs
instead with .ta 0.4iR 0.5i. The last line of lp ends
with \c so that it will become a part of the first line
of the text that follows.

T4. Multiple Column Output

The production of multiple column pages requires the
footer macro to decide whether it was invoked by
other than the last column, so that it will begin a new
column rather than produce the bottom margin. The
header can initialize a column register that the footer
will increment and test. The following is arranged
for two columns, but is easily modified for more.

.de hd \"header

. ---

.nr cl 0 1 \"init column count

.mk \"mark top of text

..

.de fo \"footer

.ie \\n+(cl<2 \{\

.po +3.4i \"next column; 3.1+0.3

.rt \"back to mark

- 27 -

NROFF/TROFF User’s Manual
October 11, 1976

.ns \} \"no-space mode

.el \{\

.po \\nMu \"restore left margin

. ---
´bp \}
..
.ll 3.1i \"column width
.nr M \\n(.o \"save left margin

Typically a portion of the top of the first page con-
tains full width text; the request for the narrower line
length, as well as another .mk would be made where
the two column output was to begin.

T5. Footnote Processing

The footnote mechanism to be described is used by
imbedding the footnotes in the input text at the point
of reference, demarcated by an initial .fn and a termi-
nal .ef:

.fn
Footnote text and control lines...
.ef

In the following, footnotes are processed in a separate
environment and diverted for later printing in the
space immediately prior to the bottom margin. There
is provision for the case where the last collected foot-
note doesn’t completely fit in the available space.

.de hd \"header

. ---

.nr x 0 1 \"init footnote count

.nr y 0– \\nb \"current footer place

.ch fo – \\nbu \"reset footer trap

.if \\n(dn .fz \"leftover footnote

..

.de fo \"footer

.nr dn 0 \"zero last diversion size

.if \\nx \{\

.ev 1 \"expand footnotes in ev1

.nf \"retain vertical size

.FN \"footnotes

.rm FN \"delete it

.if "\\n(.z"fy" .di \"end overflow diversion

.nr x 0 \"disable fx

.ev \} \"pop environment

. ---
´bp
..
.de fx \"process footnote overflow
.if \\nx .di fy \"divert overflow
..
.de fn \"start footnote
.da FN \"divert (append) footnote
.ev 1 \"in environment 1
.if \\n+x=1 .fs \"if first, include separator

.fi \"fill mode

..

.de ef \"end footnote

.br \"finish output

.nr z \\n(.v \"save spacing

.ev \"pop ev

.di \"end diversion

.nr y – \\n(dn \"new footer position,

.if \\nx=1 .nr y – (\\n(.v– \\nz) \
\"uncertainty correction

.ch fo \\nyu \"y is negative

.if (\\n(nl+1v)>(\\n(.p+\\ny) \

.ch fo \\n(nlu+1v \"it didn’t fit

..

.de fs \"separator
\l´ 1i´ \"1 inch rule
.br
..
.de fz \"get leftover footnote
.fn
.nf \"retain vertical size
.fy \"where fx put it
.ef
..
.nr b 1.0i \"bottom margin size
.wh 0 hd \"header trap
.wh 12i fo \"footer trap, temp position
.wh – \\nbu fx \"fx at footer position
.ch fo – \\nbu \"conceal fx with fo

The header hd initializes a footnote count register x,
and sets both the current footer trap position register
y and the footer trap itself to a nominal position
specified in register b. In addition, if the register dn
indicates a leftover footnote, fz is invoked to repro-
cess it. The footnote start macro fn begins a diver-
sion (append) in environment 1, and increments the
count x; if the count is one, the footnote separator fs
is interpolated. The separator is kept in a separate
macro to permit user redefinition. The footnote end
macro ef restores the previous environment and ends
the diversion after saving the spacing size in register
z. y is then decremented by the size of the footnote,
available in dn; then on the first footnote, y is further
decremented by the difference in vertical base-line
spacings of the two environments, to prevent the late
triggering the footer trap from causing the last line of
the combined footnotes to overflow. The footer trap
is then set to the lower (on the page) of y or the
current page position (nl) plus one line, to allow for
printing the reference line. If indicated by x, the
footer fo rereads the footnotes from FN in nofill
mode in environment 1, and deletes FN. If the foot-
notes were too large to fit, the macro fx will be trap-
invoked to redivert the overflow into fy, and the

- 28 -

NROFF/TROFF User’s Manual
October 11, 1976

register dn will later indicate to the header whether fy
is empty. Both fo and fx are planted in the nominal
footer trap position in an order that causes fx to be
concealed unless the fo trap is moved. The footer
then terminates the overflow diversion, if necessary,
and zeros x to disable fx, because the uncertainty
correction together with a not-too-late triggering of
the footer can result in the footnote rereading finish-
ing before reaching the fx trap.

A good exercise for the student is to combine the
multiple-column and footnote mechanisms.

T6. The Last Page

After the last input file has ended, NROFF and TROFF
invoke the end macro (§7), if any, and when it
finishes, eject the remainder of the page. During the
eject, any traps encountered are processed normally.
At the end of this last page, processing terminates
unless a partial line, word, or partial word remains.
If it is desired that another page be started, the end-
macro

.de en \"end-macro
\c
´bp
..
.em en

will deposit a null partial word, and effect another
last page.

- 29 -

NROFF/TROFF User’s Manual
October 11, 1976

Table I

Font Style Examples

The following fonts are printed in 12-point, with a vertical spacing of 14-point, and with non-alphanumeric char-
acters separated by 1⁄4 em space. The Special Mathematical Font was specially prepared for Bell Laboratories by
Graphic Systems, Inc. of Hudson, New Hampshire. The Times Roman, Italic, and Bold are among the many
standard fonts available from that company.

Times Roman

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
! $ % & () ‘ ’ * + – . , / : ; = ? [] 
• — - _ 1⁄4 1⁄2 3⁄4 fi fl ff ffi ffl ˚ † ′ ¢  

Times Italic

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
! $ % & () ‘ ’ * + – . , / : ; = ? [] 
• — - _ 1⁄4 1⁄2 3⁄4 fi fl ff ffi ffl ˚ † ′ ¢  

Times Bold

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
! $ % & () ‘ ’ * + – . , / : ; = ? [] 
• — - _ 1⁄4 1⁄2 3⁄4 fi fl ff ffi ffl ˚ † ′ ¢  

Special Mathematical Font

" ´ \ ˆ _ ` ˜ ⁄ < > { } # @ + − = ∗
α β γ δ ε ζ η θ ι κ λ µ ν ξ ο π ρ σ ς τ υ φ χ ψ ω
Γ ∆ Θ Λ Ξ Π Σ Υ Φ Ψ Ω
√  ≥ ≤ ≡ ∼ ∼− ≠ → ← ↑ ↓ × ÷ ± ∪ ∩ ⊂ ⊃ ⊆ ⊇ ∞ ∂
§ ∇ ¬ ∫ ∝ ∅ ∈ ‡ |            

- 30 -

NROFF/TROFF User’s Manual
October 11, 1976

Table II

Input Naming Conventions for ´, `,and –
and for Non-ASCII Special Characters

Non-ASCII characters and m mi in nu us s on the standard fonts.

I In np pu ut t C Ch ha ar ra ac ct te er r I In np pu ut t C Ch ha ar ra ac ct te er r
C Ch ha ar r N Na am me e N Na am me e C Ch ha ar r N Na am me e N Na am me e

’ ´ close quote
‘ ` open quote

— \(em 3⁄4 Em dash
- – hyphen or
- \(hy hyphen
– \– current font minus
• \(bu bullet

\(sq square
_ \(ru rule
1⁄4 \(14 1⁄4
1⁄2 \(12 1⁄2
3⁄4 \(34 3⁄4

fi \(fi fi
fl \(fl fl
ff \(ff ff
ffi \(Fi ffi
ffl \(Fl ffl
˚ \(de degree
† \(dg dagger
′ \(fm foot mark
¢ \(ct cent sign
 \(rg registered
 \(co copyright

Non-ASCII characters and ´, `, _ , +, −, =, and ∗ on the special font.

The ASCII characters @, #, ", ´, `, <, >, \, {, }, ˜, ˆ, and _ exist only on the special font and are printed as a 1-
em space if that font is not mounted. The following characters exist only on the special font except for the upper
case Greek letter names followed by † which are mapped into upper case English letters in whatever font is
mounted on font position one (default Times Roman). The special math plus, minus, and equals are provided to
insulate the appearance of equations from the choice of standard fonts.

I In np pu ut t C Ch ha ar ra ac ct te er r I In np pu ut t C Ch ha ar ra ac ct te er r
C Ch ha ar r N Na am me e N Na am me e C Ch ha ar r N Na am me e N Na am me e

+ \(pl math plus
− \(mi math minus
= \(eq math equals
∗ \(** math star
§ \(sc section
´ \(aa acute accent
` \(ga grave accent
_ \(ul underrule
⁄ \(sl slash (matching backslash)
α \(*a alpha
β \(*b beta
γ \(*g gamma
δ \(*d delta
ε \(*e epsilon
ζ \(*z zeta
η \(*y eta
θ \(*h theta
ι \(*i iota
κ \(*k kappa

λ \(*l lambda
µ \(*m mu
ν \(*n nu
ξ \(*c xi
ο \(*o omicron
π \(*p pi
ρ \(*r rho
σ \(*s sigma
ς \(ts terminal sigma
τ \(*t tau
υ \(*u upsilon
φ \(*f phi
χ \(*x chi
ψ \(*q psi
ω \(*w omega
Α \(*A Alpha†
Β \(*B Beta†
Γ \(*G Gamma
∆ \(*D Delta

- 31 -

NROFF/TROFF User’s Manual
October 11, 1976

I In np pu ut t C Ch ha ar ra ac ct te er r I In np pu ut t C Ch ha ar ra ac ct te er r
C Ch ha ar r N Na am me e N Na am me e C Ch ha ar r N Na am me e N Na am me e

Ε \(*E Epsilon†
Ζ \(*Z Zeta†
Η \(*Y Eta†
Θ \(*H Theta
Ι \(*I Iota†
Κ \(*K Kappa†
Λ \(*L Lambda
Μ \(*M Mu†
Ν \(*N Nu†
Ξ \(*C Xi
Ο \(*O Omicron†
Π \(*P Pi
Ρ \(*R Rho†
Σ \(*S Sigma
Τ \(*T Tau†
Υ \(*U Upsilon
Φ \(*F Phi
Χ \(*X Chi†
Ψ \(*Q Psi
Ω \(*W Omega
√ \(sr square root
 \(rn root en extender
≥ \(>= >=
≤ \(<= <=
≡ \(== identically equal
∼− \(˜= approx =
∼ \(ap approximates
≠ \(!= not equal
→ \(−> right arrow
← \(<− left arrow
↑ \(ua up arrow
↓ \(da down arrow
× \(mu multiply
÷ \(di divide
± \(+− plus-minus
∪ \(cu cup (union)
∩ \(ca cap (intersection)
⊂ \(sb subset of
⊃ \(sp superset of
⊆ \(ib improper subset
⊇ \(ip improper superset
∞ \(if infinity
∂ \(pd partial derivative
∇ \(gr gradient
¬ \(no not
∫ \(is integral sign
∝ \(pt proportional to
∅ \(es empty set
∈ \(mo member of
 \(br box vertical rule
‡ \(dd double dagger

\(rh right hand
\(lh left hand
\(bs Bell System logo

| \(or or
\(ci circle

 \(lt left top of big curly bracket
 \(lb left bottom
 \(rt right top
 \(rb right bot
 \(lk left center of big curly bracket
 \(rk right center of big curly bracket
 \(bv bold vertical
 \(lf left floor (left bottom of big

square bracket)
 \(rf right floor (right bottom)
 \(lc left ceiling (left top)
 \(rc right ceiling (right top)

- 32 -

May 15, 1977

Summary of Changes to N/TROFF Since October 1976 Manual

Options

-h (Nroff only) Output tabs used during horizontal spacing to speed output as well as reduce out-
put byte count. Device tab settings assumed to be every 8 nominal character widths. The
default settings of input (logical) tabs is also initialized to every 8 nominal character widths.

-z Efficiently suppresses formatted output. Only message output will occur (from "tm"s and diag-
nostics).

Old Requests

.ad c The adjustment type indicator "c" may now also be a number previously obtained from the ".j"
register (see below).

.so name The contents of file "name" will be interpolated at the point the "so" is encountered. Previ-
ously, the interpolation was done upon return to the file-reading input level.

New Request

.ab text Prints "text" on the message output and terminates without further processing. If "text" is miss-
ing, "User Abort." is printed. Does not cause a break. The output buffer is flushed.

.fz F N forces f_ont "F" to be in siz_e N. N may have the form N, +N, or -N. For example,
.fz 3 -2

will cause an implicit \s-2 every time font 3 is entered, and a corresponding \s+2 when it is left.
Special font characters occurring during the reign of font F will have the same size
modification. If special characters are to be treated differently,

.fz S F N
may be used to specify the size treatment of special characters during font F. For example,

.fz 3 -3

.fz S 3 -0
will cause automatic reduction of font 3 by 3 points while the special characters would not be
affected. Any ‘‘.fp’’ request specifying a font on some position must precede ‘‘.fz’’ requests
relating to that position.

New Predefined Number Registers.

.k Read-only. Contains the horizontal size of the text portion (without indent) of the current par-
tially collected output line, if any, in the current environment.

.j Read-only. A number representing the current adjustment mode and type. Can be saved and
later given to the "ad" request to restore a previous mode.

.P Read-only. 1 if the current page is being printed, and zero otherwise.

.L Read-only. Contains the current line-spacing parameter ("ls").

c. General register access to the input line-number in the current input file. Contains the same
value as the read-only ".c" register.

A TROFF Tutorial

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

troff is a text-formatting program for driving the Graphic Systems photo-
typesetter on the UNIX† and GCOS operating systems. This device is capable of pro-
ducing high quality text; this paper is an example of troff output.

The phototypesetter itself normally runs with four fonts, containing roman, italic
and bold letters (as on this page), a full greek alphabet, and a substantial number of
special characters and mathematical symbols. Characters can be printed in a range of
sizes, and placed anywhere on the page.

troff allows the user full control over fonts, sizes, and character positions, as
well as the usual features of a formatter — right-margin justification, automatic hyphe-
nation, page titling and numbering, and so on. It also provides macros, arithmetic vari-
ables and operations, and conditional testing, for complicated formatting tasks.

This document is an introduction to the most basic use of troff. It presents just
enough information to enable the user to do simple formatting tasks like making view-
graphs, and to make incremental changes to existing packages of troff commands. In
most respects, the UNIX formatter nroff is identical to troff, so this document also
serves as a tutorial on nroff.

August 4, 1978

_ ______________
†UNIX is a Trademark of Bell Laboratories.

A TROFF Tutorial

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction

troff [1] is a text-formatting program, written
by J. F. Ossanna, for producing high-quality printed
output from the phototypesetter on the UNIX and
GCOS operating systems. This document is an exam-
ple of troff output.

The single most important rule of using troff is
not to use it directly, but through some intermediary.
In many ways, troff resembles an assembly language
— a remarkably powerful and flexible one — but
nonetheless such that many operations must be
specified at a level of detail and in a form that is too
hard for most people to use effectively.

For two special applications, there are pro-
grams that provide an interface to troff for the major-
ity of users. eqn [2] provides an easy to learn
language for typesetting mathematics; the eqn user
need know no troff whatsoever to typeset mathemat-
ics. tbl [3] provides the same convenience for pro-
ducing tables of arbitrary complexity.

For producing straight text (which may well
contain mathematics or tables), there are a number of
‘macro packages’ that define formatting rules and
operations for specific styles of documents, and
reduce the amount of direct contact with troff. In
particular, the ‘– ms’ [4] and PWB/MM [5] packages
for Bell Labs internal memoranda and external papers
provide most of the facilities needed for a wide range
of document preparation. (This memo was prepared
with ‘– ms’.) There are also packages for viewgraphs,
for simulating the older roff formatters on UNIX and
GCOS, and for other special applications. Typically
you will find these packages easier to use than troff
once you get beyond the most trivial operations; you
should always consider them first.

In the few cases where existing packages don’t
do the whole job, the solution is not to write an
entirely new set of troff instructions from scratch, but
to make small changes to adapt packages that already
exist.

In accordance with this philosophy of letting
someone else do the work, the part of troff described
here is only a small part of the whole, although it
tries to concentrate on the more useful parts. In any

case, there is no attempt to be complete. Rather, the
emphasis is on showing how to do simple things, and
how to make incremental changes to what already
exists. The contents of the remaining sections are:

2. Point sizes and line spacing
3. Fonts and special characters
4. Indents and line length
5. Tabs
6. Local motions: Drawing lines and characters
7. Strings
8. Introduction to macros
9. Titles, pages and numbering

10. Number registers and arithmetic
11. Macros with arguments
12. Conditionals
13. Environments
14. Diversions

Appendix: Typesetter character set

The troff described here is the C-language version
running on UNIX at Murray Hill, as documented in
[1].

To use troff you have to prepare not only the
actual text you want printed, but some information
that tells how you want it printed. (Readers who use
roff will find the approach familiar.) For troff the
text and the formatting information are often
intertwined quite intimately. Most commands to troff
are placed on a line separate from the text itself,
beginning with a period (one command per line). For
example,

Some text.
.ps 14
Some more text.

will change the ‘point size’, that is, the size of the
letters being printed, to ‘14 point’ (one point is 1/72
inch) like this:

Some text. Some more text.

Occasionally, though, something special occurs
in the middle of a line — to produce

- 2 -

Area = πr 2

you have to type

Area = \(∗p\fIr\fR\ \s8\u2\d\s0

(which we will explain shortly). The backslash char-
acter \ \ is used to introduce troff commands and spe-
cial characters within a line of text.

2. Point Sizes; Line Spacing

As mentioned above, the command .ps .ps sets the
point size. One point is 1/72 inch, so 6-point charac-
ters are at most 1/12 inch high, and 36-point charac-
ters are 1⁄2 inch. There are 15 point sizes, listed
below.

6 point: Pack my box with five dozen liquor jugs.
7 point: Pack my box with five dozen liquor jugs.
8 point: Pack my box with five dozen liquor jugs.
9 point: Pack my box with five dozen liquor jugs.
10 point: Pack my box with five dozen liquor
11 point: Pack my box with five dozen
12 point: Pack my box with five dozen
14 point: Pack my box with five

16 point 18 point 20 point

22 24 28 36
If the number after .ps .ps is not one of these legal

sizes, it is rounded up to the next valid value, with a
maximum of 36. If no number follows .ps .ps, troff
reverts to the previous size, whatever it was. troff
begins with point size 10, which is usually fine. This
document is in 9 point.

The point size can also be changed in the mid-
dle of a line or even a word with the in-line com-
mand \s\s. To produce

UNIX runs on a PDP-11/45

type

\s8UNIX\s10 runs on a \s8PDP-\s1011/45

As above, \s\s should be followed by a legal point size,
except that \s0\s0 causes the size to revert to its previous
value. Notice that \s1011\s1011 can be understood correctly
as ‘size 10, followed by an 11’, if the size is legal,
but not otherwise. Be cautious with similar construc-
tions.

Relative size changes are also legal and useful:

\s– 2UNIX\s+2

temporarily decreases the size, whatever it is, by two
points, then restores it. Relative size changes have
the advantage that the size difference is independent
of the starting size of the document. The amount of
the relative change is restricted to a single digit.

The other parameter that determines what the
type looks like is the spacing between lines, which is
set independently of the point size. Vertical spacing
is measured from the bottom of one line to the bot-
tom of the next. The command to control vertical
spacing is .vs .vs. For running text, it is usually best to
set the vertical spacing about 20% bigger than the
character size. For example, so far in this document,
we have used ‘‘9 on 11’’, that is,

.ps 9

.vs 11p

If we changed to

.ps 9

.vs 9p

the running text would look like this. After a few
lines, you will agree it looks a little cramped. The
right vertical spacing is partly a matter of taste,
depending on how much text you want to squeeze
into a given space, and partly a matter of traditional
printing style. By default, troff uses 10 on 12.

Point size and vertical spacing
make a substantial difference in the
amount of text per square inch. This is
12 on 14.

Point size and vertical spacing make a substantial difference in the
amount of text per square inch. For example, 10 on 12 uses about twice as much
space as 7 on 8. This is 6 on 7, which is even smaller. It packs a lot more
words per line, but you can go blind trying to read it.

When used without arguments, .ps .ps and .vs .vs
revert to the previous size and vertical spacing respec-
tively.

The command .sp .sp is used to get extra vertical
space. Unadorned, it gives you one extra blank line
(one .vs .vs, whatever that has been set to). Typically,
that’s more or less than you want, so .sp .sp can be fol-
lowed by information about how much space you
want —

.sp 2i

means ‘two inches of vertical space’.

.sp 2p

means ‘two points of vertical space’; and

.sp 2

means ‘two vertical spaces’ — two of whatever .vs .vs is
set to (this can also be made explicit with .sp 2v .sp 2v);
troff also understands decimal fractions in most
places, so

.sp 1.5i

is a space of 1.5 inches. These same scale factors
can be used after .vs .vs to define line spacing, and in
fact after most commands that deal with physical
dimensions.

- 3 -

It should be noted that all size numbers are
converted internally to ‘machine units’, which are
1/432 inch (1/6 point). For most purposes, this is
enough resolution that you don’t have to worry about
the accuracy of the representation. The situation is
not quite so good vertically, where resolution is 1/144
inch (1/2 point).

3. Fonts and Special Characters

troff and the typesetter allow four different
fonts at any one time. Normally three fonts (Times
roman, italic and bold) and one collection of special
characters are permanently mounted.

abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

The greek, mathematical symbols and miscellany of
the special font are listed in Appendix A.

troff prints in roman unless told otherwise. To
switch into bold, use the .ft .ft command

.ft B

and for italics,

.ft I

To return to roman, use .ft R .ft R; to return to the previ-
ous font, whatever it was, use either .ft P .ft P or just .ft .ft.
The ‘underline’ command

.ul

causes the next input line to print in italics. .ul .ul can
be followed by a count to indicate that more than one
line is to be italicized.

Fonts can also be changed within a line or
word with the in-line command \f\f:

boldface text

is produced by

\fBbold\fIface\fR text

If you want to do this so the previous font, whatever
it was, is left undisturbed, insert extra \fP\fP commands,
like this:

\fBbold\fP\fIface\fP\fR text\fP

Because only the immediately previous font is
remembered, you have to restore the previous font
after each change or you can lose it. The same is
true of .ps .ps and .vs .vs when used without an argument.

There are other fonts available besides the
standard set, although you can still use only four at
any given time. The command .fp .fp tells troff what
fonts are physically mounted on the typesetter:

.fp 3 H

says that the Helvetica font is mounted on position 3.
(For a complete list of fonts and what they look like,
see the troff manual.) Appropriate .fp .fp commands
should appear at the beginning of your document if
you do not use the standard fonts.

It is possible to make a document relatively
independent of the actual fonts used to print it by
using font numbers instead of names; for example, \f3\f3
and .ft˜3 .ft˜3 mean ‘whatever font is mounted at position
3’, and thus work for any setting. Normal settings
are roman font on 1, italic on 2, bold on 3, and spe-
cial on 4.

There is also a way to get ‘synthetic’ bold
fonts by overstriking letters with a slight offset. Look
at the .bd .bd command in [1].

Special characters have four-character names
beginning with \(\(, and they may be inserted any-
where. For example,

1⁄4 + 1⁄2 = 3⁄4

is produced by

\(14 + \(12 = \(34

In particular, greek letters are all of the form \(∗– \(∗– ,
where – – is an upper or lower case roman letter rem-
iniscent of the greek. Thus to get

Σ(α×β) → ∞

in bare troff we have to type

\(∗S(\(∗a\(mu\(∗b) \(−> \(if

That line is unscrambled as follows:

\(∗S Σ
((
\(∗a α
\(mu ×
\(∗b β
))
\(−> →
\(if ∞

A complete list of these special names occurs in
Appendix A.

In eqn [2] the same effect can be achieved
with the input

SIGMA (alpha times beta) – > inf

which is less concise, but clearer to the uninitiated.

Notice that each four-character name is a sin-
gle character as far as troff is concerned — the
‘translate’ command

.tr \(mi\(em

is perfectly clear, meaning

- 4 -

.tr −—

that is, to translate − into —.

Some characters are automatically translated
into others: grave ` and acute ´ accents (apos-
trophes) become open and close single quotes ‘˜’; the
combination of ‘‘...’’ is generally preferable to the
double quotes "...". Similarly a typed minus sign
becomes a hyphen -. To print an explicit – sign, use
\-\-. To get a backslash printed, use \e\e.

4. Indents and Line Lengths

troff starts with a line length of 6.5 inches, too
wide for 81⁄2×11 paper. To reset the line length, use
the .ll .ll command, as in

.ll 6i

As with .sp .sp, the actual length can be specified in
several ways; inches are probably the most intuitive.

The maximum line length provided by the
typesetter is 7.5 inches, by the way. To use the full
width, you will have to reset the default physical left
margin (‘‘page offset’’), which is normally slightly
less than one inch from the left edge of the paper.
This is done by the .po .po command.

.po 0

sets the offset as far to the left as it will go.

The indent command .in .in causes the left margin
to be indented by some specified amount from the
page offset. If we use .in .in to move the left margin in,
and .ll .ll to move the right margin to the left, we can
make offset blocks of text:

.in 0.3i

.ll −0.3i
text to be set into a block
.ll +0.3i
.in −0.3i

will create a block that looks like this:

Pater noster qui est in caelis sanctificetur
nomen tuum; adveniat regnum tuum; fiat
voluntas tua, sicut in caelo, et in terra. ...
Amen.

Notice the use of ‘+’ and ‘−’ to specify the amount of
change. These change the previous setting by the
specified amount, rather than just overriding it. The
distinction is quite important: .ll +1i .ll +1i makes lines one
inch longer; .ll 1i .ll 1i makes them one inch long.

With .in .in, .ll .ll and .po .po, the previous value is used
if no argument is specified.

To indent a single line, use the ‘temporary
indent’ command .ti .ti. For example, all paragraphs in
this memo effectively begin with the command

.ti 3

Three of what? The default unit for .ti .ti, as for most
horizontally oriented commands (.ll .ll, .in .in, .po .po), is ems;
an em is roughly the width of the letter ‘m’ in the
current point size. (Precisely, a em in size p is p
points.) Although inches are usually clearer than ems
to people who don’t set type for a living, ems have a
place: they are a measure of size that is proportional
to the current point size. If you want to make text
that keeps its proportions regardless of point size, you
should use ems for all dimensions. Ems can be
specified as scale factors directly, as in .ti 2.5m .ti 2.5m.

Lines can also be indented negatively if the
indent is already positive:

.ti −0.3i

causes the next line to be moved back three tenths of
an inch. Thus to make a decorative initial capital, we
indent the whole paragraph, then move the letter ‘P’
back with a .ti .ti command:

P
ater noster qui est in caelis
sanctificetur nomen tuum; adveniat
regnum tuum; fiat voluntas tua, sicut

in caelo, et in terra. ... Amen.

Of course, there is also some trickery to make the ‘P’
bigger (just a ‘\s36P\s0’), and to move it down from
its normal position (see the section on local motions).

5. Tabs

Tabs (the ASCII ‘horizontal tab’ character) can
be used to produce output in columns, or to set the
horizontal position of output. Typically tabs are used
only in unfilled text. Tab stops are set by default
every half inch from the current indent, but can be
changed by the .ta .ta command. To set stops every
inch, for example,

.ta 1i 2i 3i 4i 5i 6i

Unfortunately the stops are left-justified only
(as on a typewriter), so lining up columns of right-
justified numbers can be painful. If you have many
numbers, or if you need more complicated table lay-
out, don’t use troff directly; use the tbl program
described in [3].

For a handful of numeric columns, you can do
it this way: Precede every number by enough blanks
to make it line up when typed.

.nf

.ta 1i 2i 3i
1 tab 2 tab 3

40 tab 50 tab 60
700 tab 800 tab 900
.fi

Then change each leading blank into the string \0\0.
This is a character that does not print, but that has the

- 5 -

same width as a digit. When printed, this will pro-
duce

1 2 3
40 50 60

700 800 900

It is also possible to fill up tabbed-over space
with some character other than blanks by setting the
‘tab replacement character’ with the .tc .tc command:

.ta 1.5i 2.5i

.tc \(ru (\(ru is "_")
Name tab Age tab

produces

Name___________________ Age ___________

To reset the tab replacement character to a blank, use
.tc .tc with no argument. (Lines can also be drawn with
the \l\l command, described in Section 6.)

troff also provides a very general mechanism
called ‘fields’ for setting up complicated columns.
(This is used by tbl). We will not go into it in this
paper.

6. Local Motions: Drawing lines and characters

Remember ‘Area = πr2’ and the big ‘P’ in the
Paternoster. How are they done? troff provides a
host of commands for placing characters of any size
at any place. You can use them to draw special char-
acters or to tune your output for a particular appear-
ance. Most of these commands are straightforward,
but messy to read and tough to type correctly.

If you won’t use eqn, subscripts and super-
scripts are most easily done with the half-line local
motions \u\u and \d\d. To go back up the page half a
point-size, insert a \u\u at the desired place; to go
down, insert a \d\d. (\u\u and \d\d should always be used in
pairs, as explained below.) Thus

Area = \(∗pr\u2\d

produces

Area = πr2

To make the ‘2’ smaller, bracket it with \s– 2...\s0\s– 2...\s0.
Since \u\u and \d\d refer to the current point size, be sure
to put them either both inside or both outside the size
changes, or you will get an unbalanced vertical
motion.

Sometimes the space given by \u\u and \d\d isn’t
the right amount. The \v\v command can be used to
request an arbitrary amount of vertical motion. The
in-line command

\v´(amount)´

causes motion up or down the page by the amount
specified in ‘(amount)’. For example, to move the ‘P’
down, we used

.in +0.6i (move paragraph in)

.ll – 0.3i (shorten lines)

.ti – 0.3i (move P back)
\v´2´\s36P\s0\v´– 2´ater noster qui est
in caelis ...

A minus sign causes upward motion, while no sign or
a plus sign means down the page. Thus \v′– 2′\v′– 2′ causes
an upward vertical motion of two line spaces.

There are many other ways to specify the
amount of motion —

\v´0.1i´
\v´3p´
\v´– 0.5m´

and so on are all legal. Notice that the scale specifier
i i or p p or m m goes inside the quotes. Any character can
be used in place of the quotes; this is also true of all
other troff commands described in this section.

Since troff does not take within-the-line verti-
cal motions into account when figuring out where it is
on the page, output lines can have unexpected posi-
tions if the left and right ends aren’t at the same vert-
ical position. Thus \v\v, like \u\u and \d\d, should always
balance upward vertical motion in a line with the
same amount in the downward direction.

Arbitrary horizontal motions are also available
— \h\h is quite analogous to \v\v, except that the default
scale factor is ems instead of line spaces. As an
example,

\h´– 0.1i´

causes a backwards motion of a tenth of an inch. As
a practical matter, consider printing the mathematical
symbol ‘>>’. The default spacing is too wide, so eqn
replaces this by

>\h´– 0.3m´>

to produce > >.

Frequently \h\h is used with the ‘width function’
\w\w to generate motions equal to the width of some
character string. The construction

\w´thing´

is a number equal to the width of ‘thing’ in machine
units (1/432 inch). All troff computations are ulti-
mately done in these units. To move horizontally the
width of an ‘x’, we can say

\h´\w´x´u´

As we mentioned above, the default scale factor for
all horizontal dimensions is m m, ems, so here we must
have the u u for machine units, or the motion produced
will be far too large. troff is quite happy with the
nested quotes, by the way, so long as you don’t leave
any out.

As a live example of this kind of construction,
all of the command names in the text, like .sp .sp, were

- 6 -

done by overstriking with a slight offset. The com-
mands for .sp .sp are

.sp\h´– \w´.sp´u´\h´1u´.sp

That is, put out ‘.sp’, move left by the width of ‘.sp’,
move right 1 unit, and print ‘.sp’ again. (Of course
there is a way to avoid typing that much input for
each command name, which we will discuss in Sec-
tion 11.)

There are also several special-purpose troff
commands for local motion. We have already seen
\0\0, which is an unpaddable white space of the same
width as a digit. ‘Unpaddable’ means that it will
never be widened or split across a line by line
justification and filling. There is also \ \(blank), which
is an unpaddable character the width of a space, \\ ,
which is half that width, \ˆ \ˆ, which is one quarter of
the width of a space, and \&\&, which has zero width.
(This last one is useful, for example, in entering a
text line which would otherwise begin with a ‘.’.)

The command \o\o, used like

\o´set of characters´

causes (up to 9) characters to be overstruck, centered
on the widest. This is nice for accents, as in

syst\o"e\(ga"me t\o"e\(aa"l\o"e\(aa"phonique

which makes

système téléphonique

The accents are \(ga\(ga and \(aa\(aa, or \` \` and \´ \´; remember
that each is just one character to troff.

You can make your own overstrikes with
another special convention, \z\z, the zero-motion com-
mand. \zx\zx suppresses the normal horizontal motion
after printing the single character x x, so another char-
acter can be laid on top of it. Although sizes can be
changed within \o\o, it centers the characters on the
widest, and there can be no horizontal or vertical
motions, so \z\z may be the only way to get what you
want:

is produced by

.sp 2
\s8\z\(sq\s14\z\(sq\s22\z\(sq\s36\(sq

The .sp .sp is needed to leave room for the result.

As another example, an extra-heavy semicolon
that looks like

,. instead of ; or ;
can be constructed with a big comma and a big
period above it:

\s+6\z,\v´−0.25m´.\v´0.25m´\s0

‘0.25m’ is an empirical constant.

A more ornate overstrike is given by the brack-
eting function \b\b, which piles up characters vertically,
centered on the current baseline. Thus we can get big
brackets, constructing them with piled-up smaller
pieces:






 x 






by typing in only this:

.sp
\b′\(lt\(lk\(lb′ \b′\(lc\(lf′ x \b′\(rc\(rf′ \b′\(rt\(rk\(rb′

troff also provides a convenient facility for
drawing horizontal and vertical lines of arbitrary
length with arbitrary characters. \l′1i′\l′1i′ draws a line
one inch long, like this: ________________ . The
length can be followed by the character to use if the _
isn’t appropriate; \l′0.5i.′\l′0.5i.′ draws a half-inch line of
dots: The construction \L\L is entirely
analogous, except that it draws a vertical line instead
of horizontal.

7. Strings

Obviously if a paper contains a large number
of occurrences of an acute accent over a letter ‘e’,
typing \o"e\´" \o"e\´" for each é would be a great nuisance.

Fortunately, troff provides a way in which you
can store an arbitrary collection of text in a ‘string’,
and thereafter use the string name as a shorthand for
its contents. Strings are one of several troff mechan-
isms whose judicious use lets you type a document
with less effort and organize it so that extensive for-
mat changes can be made with few editing changes.

A reference to a string is replaced by whatever
text the string was defined as. Strings are defined
with the command .ds .ds. The line

.ds e \o"e\´"

defines the string e e to have the value \o"e\´" \o"e\´"

String names may be either one or two charac-
ters long, and are referred to by \∗x\∗x for one character
names or \∗(xy\∗(xy for two character names. Thus to get
téléphone, given the definition of the string e e as
above, we can say t\∗el\∗ephone.

If a string must begin with blanks, define it as

.ds xx " text

The double quote signals the beginning of the
definition. There is no trailing quote; the end of the
line terminates the string.

A string may actually be several lines long; if
troff encounters a \ \ at the end of any line, it is
thrown away and the next line added to the current

- 7 -

one. So you can make a long string simply by end-
ing each line but the last with a backslash:

.ds xx this \
is a very \
long string

Strings may be defined in terms of other
strings, or even in terms of themselves; we will dis-
cuss some of these possibilities later.

8. Introduction to Macros

Before we can go much further in troff, we
need to learn a bit about the macro facility. In its
simplest form, a macro is just a shorthand notation
quite similar to a string. Suppose we want every
paragraph to start in exactly the same way — with a
space and a temporary indent of two ems:

.sp

.ti +2m

Then to save typing, we would like to collapse these
into one shorthand line, a troff ‘command’ like

.PP

that would be treated by troff exactly as

.sp

.ti +2m

.PP .PP is called a macro. The way we tell troff what

.PP .PP means is to define it with the .de .de command:

.de PP

.sp

.ti +2m

..

The first line names the macro (we used ‘.PP .PP’ for
‘paragraph’, and upper case so it wouldn’t conflict
with any name that troff might already know about).
The last line marks the end of the definition. In
between is the text, which is simply inserted when-
ever troff sees the ‘command’ or macro call

.PP

A macro can contain any mixture of text and format-
ting commands.

The definition of .PP .PP has to precede its first
use; undefined macros are simply ignored. Names are
restricted to one or two characters.

Using macros for commonly occurring
sequences of commands is critically important. Not
only does it save typing, but it makes later changes
much easier. Suppose we decide that the paragraph
indent is too small, the vertical space is much too big,
and roman font should be forced. Instead of chang-
ing the whole document, we need only change the
definition of .PP .PP to something like

.de PP \" paragraph macro

.sp 2p

.ti +3m

.ft R

..

and the change takes effect everywhere we used .PP .PP.

\" \" is a troff command that causes the rest of
the line to be ignored. We use it here to add com-
ments to the macro definition (a wise idea once
definitions get complicated).

As another example of macros, consider these
two which start and end a block of offset, unfilled
text, like most of the examples in this paper:

.de BS \" start indented block

.sp

.nf

.in +0.3i

..

.de BE \" end indented block

.sp

.fi

.in −0.3i

..

Now we can surround text like

Copy to
John Doe
Richard Roberts
Stanley Smith

by the commands .BS .BS and .BE .BE, and it will come out
as it did above. Notice that we indented by .in +0.3i .in +0.3i
instead of .in 0.3i .in 0.3i. This way we can nest our uses of
.BS .BS and BE BE to get blocks within blocks.

If later on we decide that the indent should be
0.5i, then it is only necessary to change the
definitions of .BS .BS and .BE .BE, not the whole paper.

9. Titles, Pages and Numbering

This is an area where things get tougher,
because nothing is done for you automatically. Of
necessity, some of this section is a cookbook, to be
copied literally until you get some experience.

Suppose you want a title at the top of each
page, saying just

˜˜˜˜left top center top right top˜˜˜˜

In roff, one can say

.he ´left top´center top´right top´

.fo ´left bottom´center bottom´right bottom´

to get headers and footers automatically on every
page. Alas, this doesn’t work in troff, a serious hard-
ship for the novice. Instead you have to do a lot of
specification.

You have to say what the actual title is (easy);
when to print it (easy enough); and what to do at and

- 8 -

around the title line (harder). Taking these in reverse
order, first we define a macro .NP .NP (for ‘new page’) to
process titles and the like at the end of one page and
the beginning of the next:

.de NP
′bp
′sp 0.5i
.tl ´left top´center top´right top´
′sp 0.3i
..

To make sure we’re at the top of a page, we issue a
‘begin page’ command ′bp′bp, which causes a skip to
top-of-page (we’ll explain the ′ ′ shortly). Then we
space down half an inch, print the title (the use of .tl .tl
should be self explanatory; later we will discuss
parameterizing the titles), space another 0.3 inches,
and we’re done.

To ask for .NP .NP at the bottom of each page, we
have to say something like ‘when the text is within an
inch of the bottom of the page, start the processing
for a new page.’ This is done with a ‘when’ com-
mand .wh .wh:

.wh – 1i NP

(No ‘.’ is used before NP; this is simply the name of
a macro, not a macro call.) The minus sign means
‘measure up from the bottom of the page’, so ‘– 1i’
means ‘one inch from the bottom’.

The .wh .wh command appears in the input outside
the definition of .NP .NP; typically the input would be

.de NP

...

..

.wh – 1i NP

Now what happens? As text is actually being
output, troff keeps track of its vertical position on the
page, and after a line is printed within one inch from
the bottom, the .NP .NP macro is activated. (In the jar-
gon, the .wh .wh command sets a trap at the specified
place, which is ‘sprung’ when that point is passed.)
.NP .NP causes a skip to the top of the next page (that’s
what the ′bp′bp was for), then prints the title with the
appropriate margins.

Why ′bp′bp and ′sp′sp instead of .bp .bp and .sp .sp? The
answer is that .sp .sp and .bp .bp, like several other com-
mands, cause a break to take place. That is, all the
input text collected but not yet printed is flushed out
as soon as possible, and the next input line is
guaranteed to start a new line of output. If we had
used .sp .sp or .bp .bp in the .NP .NP macro, this would cause a
break in the middle of the current output line when a
new page is started. The effect would be to print the
left-over part of that line at the top of the page, fol-
lowed by the next input line on a new output line.
This is not what we want. Using ′ ′ instead of . . for a
command tells troff that no break is to take place —

the output line currently being filled should not be
forced out before the space or new page.

The list of commands that cause a break is
short and natural:

.bp .br .ce .fi .nf .sp .in .ti

All others cause no break, regardless of whether you
use a . . or a ′ ′. If you really need a break, add a .br .br
command at the appropriate place.

One other thing to beware of — if you’re
changing fonts or point sizes a lot, you may find that
if you cross a page boundary in an unexpected font or
size, your titles come out in that size and font instead
of what you intended. Furthermore, the length of a
title is independent of the current line length, so titles
will come out at the default length of 6.5 inches
unless you change it, which is done with the .lt .lt com-
mand.

There are several ways to fix the problems of
point sizes and fonts in titles. For the simplest appli-
cations, we can change .NP .NP to set the proper size and
font for the title, then restore the previous values, like
this:

.de NP
′bp
′sp 0.5i
.ft R \" set title font to roman
.ps 10 \" and size to 10 point
.lt 6i \" and length to 6 inches
.tl ´left´center´right´
.ps \" revert to previous size
.ft P \" and to previous font
′sp 0.3i
..

This version of .NP .NP does not work if the fields
in the .tl .tl command contain size or font changes. To
cope with that requires troff’s ‘environment’ mechan-
ism, which we will discuss in Section 13.

To get a footer at the bottom of a page, you
can modify .NP .NP so it does some processing before the
′bp′bp command, or split the job into a footer macro
invoked at the bottom margin and a header macro
invoked at the top of the page. These variations are
left as exercises.

Output page numbers are computed automati-
cally as each page is produced (starting at 1), but no
numbers are printed unless you ask for them expli-
citly. To get page numbers printed, include the char-
acter % % in the .tl .tl line at the position where you want
the number to appear. For example

.tl ´´- % -´´

centers the page number inside hyphens, as on this
page. You can set the page number at any time with
either .bp n .bp n, which immediately starts a new page

- 9 -

numbered n n, or with .pn n .pn n, which sets the page
number for the next page but doesn’t cause a skip to
the new page. Again, .bp +n .bp +n sets the page number to
n n more than its current value; .bp .bp means .bp +1 .bp +1.

10. Number Registers and Arithmetic

troff has a facility for doing arithmetic, and for
defining and using variables with numeric values,
called number registers. Number registers, like
strings and macros, can be useful in setting up a
document so it is easy to change later. And of course
they serve for any sort of arithmetic computation.

Like strings, number registers have one or two
character names. They are set by the .nr .nr command,
and are referenced anywhere by \nx\nx (one character
name) or \n(xy\n(xy (two character name).

There are quite a few pre-defined number
registers maintained by troff, among them % % for the
current page number; nl nl for the current vertical posi-
tion on the page; dy dy, mo mo and yr yr for the current day,
month and year; and .s .s and .f .f for the current size and
font. (The font is a number from 1 to 4.) Any of
these can be used in computations like any other
register, but some, like .s .s and .f .f, cannot be changed
with .nr .nr.

As an example of the use of number registers,
in the – ms– ms macro package [4], most significant
parameters are defined in terms of the values of a
handful of number registers. These include the point
size for text, the vertical spacing, and the line and
title lengths. To set the point size and vertical spac-
ing for the following paragraphs, for example, a user
may say

.nr PS 9

.nr VS 11

The paragraph macro .PP .PP is defined (roughly) as fol-
lows:

.de PP

.ps \\n(PS \" reset size

.vs \\n(VSp \" spacing

.ft R \" font

.sp 0.5v \" half a line

.ti +3m

..

This sets the font to Roman and the point size and
line spacing to whatever values are stored in the
number registers PS PS and VS VS.

Why are there two backslashes? This is the
eternal problem of how to quote a quote. When troff
originally reads the macro definition, it peels off one
backslash to see what’s coming next. To ensure that
another is left in the definition when the macro is
used, we have to put in two backslashes in the
definition. If only one backslash is used, point size
and vertical spacing will be frozen at the time the
macro is defined, not when it is used.

Protecting by an extra layer of backslashes is
only needed for \n\n, \∗\∗, \$\$ (which we haven’t come to
yet), and \ \ itself. Things like \s\s, \f\f, \h\h, \v\v, and so on
do not need an extra backslash, since they are con-
verted by troff to an internal code immediately upon
being seen.

Arithmetic expressions can appear anywhere
that a number is expected. As a trivial example,

.nr PS \\n(PS– 2

decrements PS by 2. Expressions can use the arith-
metic operators +, – , ∗, /, % (mod), the relational
operators >, >=, <, <=, =, and != (not equal), and
parentheses.

Although the arithmetic we have done so far
has been straightforward, more complicated things are
somewhat tricky. First, number registers hold only
integers. troff arithmetic uses truncating integer divi-
sion, just like Fortran. Second, in the absence of
parentheses, evaluation is done left-to-right without
any operator precedence (including relational opera-
tors). Thus

7∗– 4+3/13

becomes ‘– 1’. Number registers can occur anywhere
in an expression, and so can scale indicators like p p, i i,
m m, and so on (but no spaces). Although integer divi-
sion causes truncation, each number and its scale
indicator is converted to machine units (1/432 inch)
before any arithmetic is done, so 1i/2u evaluates to
0.5i correctly.

The scale indicator u u often has to appear when
you wouldn’t expect it — in particular, when arith-
metic is being done in a context that implies horizon-
tal or vertical dimensions. For example,

.ll 7/2i

would seem obvious enough — 31⁄2 inches. Sorry.
Remember that the default units for horizontal param-
eters like .ll .ll are ems. That’s really ‘7 ems / 2
inches’, and when translated into machine units, it
becomes zero. How about

.ll 7i/2

Sorry, still no good — the ‘2’ is ‘2 ems’, so ‘7i/2’ is
small, although not zero. You must use

.ll 7i/2u

So again, a safe rule is to attach a scale indicator to
every number, even constants.

For arithmetic done within a .nr .nr command,
there is no implication of horizontal or vertical
dimension, so the default units are ‘units’, and 7i/2
and 7i/2u mean the same thing. Thus

.nr ll 7i/2

.ll \\n(llu

- 10 -

does just what you want, so long as you don’t forget
the u u on the .ll .ll command.

11. Macros with arguments

The next step is to define macros that can
change from one use to the next according to parame-
ters supplied as arguments. To make this work, we
need two things: first, when we define the macro, we
have to indicate that some parts of it will be provided
as arguments when the macro is called. Then when
the macro is called we have to provide actual argu-
ments to be plugged into the definition.

Let us illustrate by defining a macro .SM .SM that
will print its argument two points smaller than the
surrounding text. That is, the macro call

.SM TROFF

will produce TROFF.

The definition of .SM .SM is

.de SM
\s– 2\\$1\s+2
..

Within a macro definition, the symbol \\$n\\$n refers to
the n nth argument that the macro was called with.
Thus \\$1\\$1 is the string to be placed in a smaller point
size when .SM .SM is called.

As a slightly more complicated version, the
following definition of .SM .SM permits optional second
and third arguments that will be printed in the normal
size:

.de SM
\\$3\s– 2\\$1\s+2\\$2
..

Arguments not provided when the macro is called are
treated as empty, so

.SM TROFF),

produces TROFF), while

.SM TROFF). (

produces (TROFF). It is convenient to reverse the
order of arguments because trailing punctuation is
much more common than leading.

By the way, the number of arguments that a
macro was called with is available in number register
.$.$.

The following macro .BD .BD is the one used to
make the ‘bold roman’ we have been using for troff
command names in text. It combines horizontal
motions, width computations, and argument rearrange-
ment.

.de BD
\&\\$3\f1\\$1\h´– \w´\\$1´u+1u´\\$1\fP\\$2
..

The \h\h and \w\w commands need no extra backslash, as
we discussed above. The \&\& is there in case the
argument begins with a period.

Two backslashes are needed with the \\$n\\$n com-
mands, though, to protect one of them when the
macro is being defined. Perhaps a second example
will make this clearer. Consider a macro called .SH .SH
which produces section headings rather like those in
this paper, with the sections numbered automatically,
and the title in bold in a smaller size. The use is

.SH "Section title ..."

(If the argument to a macro is to contain blanks, then
it must be surrounded by double quotes, unlike a
string, where only one leading quote is permitted.)

Here is the definition of the .SH .SH macro:

.nr SH 0 \" initialize section number

.de SH

.sp 0.3i

.ft B

.nr SH \\n(SH+1 \" increment number

.ps \\n(PS– 1 \" decrease PS
\\n(SH. \\$1 \" number. title
.ps \\n(PS \" restore PS
.sp 0.3i
.ft R
..

The section number is kept in number register SH,
which is incremented each time just before it is used.
(A number register may have the same name as a
macro without conflict but a string may not.)

We used \\n(SH\\n(SH instead of \n(SH\n(SH and \\n(PS\\n(PS
instead of \n(PS\n(PS. If we had used \n(SH\n(SH, we would get
the value of the register at the time the macro was
defined, not at the time it was used. If that’s what
you want, fine, but not here. Similarly, by using
\\n(PS\\n(PS, we get the point size at the time the macro is
called.

As an example that does not involve numbers,
recall our .NP .NP macro which had a

.tl ´left´center´right´

We could make these into parameters by using
instead

.tl ´\\∗(LT´\\∗(CT´\\∗(RT´

so the title comes from three strings called LT, CT
and RT. If these are empty, then the title will be a
blank line. Normally CT would be set with some-
thing like

.ds CT - % -

to give just the page number between hyphens (as on
the top of this page), but a user could supply private
definitions for any of the strings.

- 11 -

12. Conditionals

Suppose we want the .SH .SH macro to leave two
extra inches of space just before section 1, but
nowhere else. The cleanest way to do that is to test
inside the .SH .SH macro whether the section number is
1, and add some space if it is. The .if .if command pro-
vides the conditional test that we can add just before
the heading line is output:

.if \\n(SH=1 .sp 2i \" first section only

The condition after the .if .if can be any arith-
metic or logical expression. If the condition is logi-
cally true, or arithmetically greater than zero, the rest
of the line is treated as if it were text — here a com-
mand. If the condition is false, or zero or negative,
the rest of the line is skipped.

It is possible to do more than one command if
a condition is true. Suppose several operations are to
be done before section 1. One possibility is to define
a macro .S1 .S1 and invoke it if we are about to do sec-
tion 1 (as determined by an .if .if).

.de S1
--- processing for section 1 ---
..
.de SH
...
.if \\n(SH=1 .S1
...
..

An alternate way is to use the extended form
of the .if .if, like this:

.if \\n(SH=1 \{--- processing
for section 1 ----\}

The braces \{\{ and \}\} must occur in the positions
shown or you will get unexpected extra lines in your
output. troff also provides an ‘if-else’ construction,
which we will not go into here.

A condition can be negated by preceding it
with ! !; we get the same effect as above (but less
clearly) by using

.if !\\n(SH>1 .S1

There are a handful of other conditions that
can be tested with .if .if. For example, is the current
page even or odd?

.if e .tl ´´even page title´´

.if o .tl ´´odd page title´´

gives facing pages different titles when used inside an
appropriate new page macro.

Two other conditions are t t and n n, which tell
you whether the formatter is troff or nroff.

.if t troff stuff ...

.if n nroff stuff ...

Finally, string comparisons may be made in an
.if .if:

.if ´string1´string2´ stuff

does ‘stuff’ if string1 is the same as string2. The
character separating the strings can be anything rea-
sonable that is not contained in either string. The
strings themselves can reference strings with \∗\∗, argu-
ments with \$\$, and so on.

13. Environments

As we mentioned, there is a potential problem
when going across a page boundary: parameters like
size and font for a page title may well be different
from those in effect in the text when the page boun-
dary occurs. troff provides a very general way to
deal with this and similar situations. There are three
‘environments’, each of which has independently sett-
able versions of many of the parameters associated
with processing, including size, font, line and title
lengths, fill/nofill mode, tab stops, and even partially
collected lines. Thus the titling problem may be
readily solved by processing the main text in one
environment and titles in a separate one with its own
suitable parameters.

The command .ev n .ev n shifts to environment n n; n n
must be 0, 1 or 2. The command .ev .ev with no argu-
ment returns to the previous environment. Environ-
ment names are maintained in a stack, so calls for
different environments may be nested and unwound
consistently.

Suppose we say that the main text is processed
in environment 0, which is where troff begins by
default. Then we can modify the new page macro
.NP .NP to process titles in environment 1 like this:

.de NP

.ev 1 \" shift to new environment

.lt 6i \" set parameters here

.ft R

.ps 10

... any other processing ...

.ev \" return to previous environment

..

It is also possible to initialize the parameters for an
environment outside the .NP .NP macro, but the version
shown keeps all the processing in one place and is
thus easier to understand and change.

14. Diversions

There are numerous occasions in page layout
when it is necessary to store some text for a period of
time without actually printing it. Footnotes are the
most obvious example: the text of the footnote usu-
ally appears in the input well before the place on the
page where it is to be printed is reached. In fact, the
place where it is output normally depends on how big
it is, which implies that there must be a way to pro-

- 12 -

cess the footnote at least enough to decide its size
without printing it.

troff provides a mechanism called a diversion
for doing this processing. Any part of the output may
be diverted into a macro instead of being printed, and
then at some convenient time the macro may be put
back into the input.

The command .di xy .di xy begins a diversion — all
subsequent output is collected into the macro xy xy until
the command .di .di with no arguments is encountered.
This terminates the diversion. The processed text is
available at any time thereafter, simply by giving the
command

.xy

The vertical size of the last finished diversion is con-
tained in the built-in number register dn dn.

As a simple example, suppose we want to
implement a ‘keep-release’ operation, so that text
between the commands .KS .KS and .KE .KE will not be split
across a page boundary (as for a figure or table).
Clearly, when a .KS .KS is encountered, we have to begin
diverting the output so we can find out how big it is.
Then when a .KE .KE is seen, we decide whether the
diverted text will fit on the current page, and print it
either there if it fits, or at the top of the next page if
it doesn’t. So:

.de KS \" start keep

.br \" start fresh line

.ev 1 \" collect in new environment

.fi \" make it filled text

.di XX \" collect in XX

..

.de KE \" end keep

.br \" get last partial line

.di \" end diversion

.if \\n(dn>=\\n(.t .bp \" bp if doesn´t fit

.nf \" bring it back in no-fill

.XX \" text

.ev \" return to normal environment

..

Recall that number register nl nl is the current position
on the output page. Since output was being diverted,
this remains at its value when the diversion started.
dn dn is the amount of text in the diversion; .t .t (another
built-in register) is the distance to the next trap,
which we assume is at the bottom margin of the page.
If the diversion is large enough to go past the trap,
the .if .if is satisfied, and a .bp .bp is issued. In either case,
the diverted output is then brought back with .XX .XX. It
is essential to bring it back in no-fill mode so troff
will do no further processing on it.

This is not the most general keep-release, nor
is it robust in the face of all conceivable inputs, but it
would require more space than we have here to write
it in full generality. This section is not intended to

teach everything about diversions, but to sketch out
enough that you can read existing macro packages
with some comprehension.

Acknowledgements

I am deeply indebted to J. F. Ossanna, the
author of troff, for his repeated patient explanations
of fine points, and for his continuing willingness to
adapt troff to make other uses easier. I am also
grateful to Jim Blinn, Ted Dolotta, Doug McIlroy,
Mike Lesk and Joel Sturman for helpful comments on
this paper.

References

[1] J. F. Ossanna, NROFF/TROFF User’s Manual,
Bell Laboratories Computing Science Technical
Report 54, 1976.

[2] B. W. Kernighan, A System for Typesetting
Mathematics — User’s Guide (Second Edition),
Bell Laboratories Computing Science Technical
Report 17, 1977.

[3] M. E. Lesk, TBL — A Program to Format
Tables, Bell Laboratories Computing Science
Technical Report 49, 1976.

[4] M. E. Lesk, Typing Documents on UNIX, Bell
Laboratories, 1978.

[5] J. R. Mashey and D. W. Smith, PWB/MM —
Programmer’s Workbench Memorandum Mac-
ros, Bell Laboratories internal memorandum.

- 13 -

Appendix A: Phototypesetter Character Set

These characters exist in roman, italic, and bold. To get the one on the left, type the four-character name on the
right.

ff \(ff fi \(fi fl \(fl ffi \(Fi ffl \(Fl
_ \(ru — \(em 1⁄4 \(14 1⁄2 \(12 3⁄4 \(34
 \(co ˚ \(de † \(dg ′ \(fm ¢ \(ct
 \(rg • \(bu \(sq - \(hy

(In bold, \(sq is .)

The following are special-font characters:

+ \(pl − \(mi × \(mu ÷ \(di
= \(eq ≡ \(== ≥ \(>= ≤ \(<=
≠ \(!= ± \(+- ¬ \(no ⁄ \(sl
∼ \(ap ∼− \(˜= ∝ \(pt ∇ \(gr
→ \(-> ← \(<- ↑ \(ua ↓ \(da
∫ \(is ∂ \(pd ∞ \(if √ \(sr
⊂ \(sb ⊃ \(sp ∪ \(cu ∩ \(ca
⊆ \(ib ⊇ \(ip ∈ \(mo ∅ \(es
´ \(aa ` \(ga \(ci \(bs
§ \(sc ‡ \(dd \(lh \(rh
 \(lt  \(rt  \(lc  \(rc
 \(lb  \(rb  \(lf  \(rf
 \(lk  \(rk  \(bv ς \(ts
 \(br | \(or _ \(ul  \(rn
∗ \(∗∗

These four characters also have two-character names. The ´ is the apostrophe on terminals; the ` is the other quote
mark.

´ \´ ` \` − \− _ _

These characters exist only on the special font, but they do not have four-character names:

" { } < > ˜ ˆ \ # @

For greek, precede the roman letter by \(∗\(∗ to get the corresponding greek; for example, \(∗a\(∗a is α.

a b g d e z y h i k l m n c o p r s t u f x q w
α β γ δ ε ζ η θ ι κ λ µ ν ξ ο π ρ σ τ υ φ χ ψ ω

A B G D E Z Y H I K L M N C O P R S T U F X Q W
Α Β Γ ∆ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω

-

C Reference Manual

Dennis M. Ritchie
Bell Telephone Laboratories

Murray Hill, New Jersey 07974

1. Introduction

C is a computer language based on the earlier language B [1]. The languages and their compilers differ in two
major ways: C introduces the notion of types, and defines appropriate extra syntax and semantics; also, C on the
PDP-11 is a true compiler, producing machine code where B produced interpretive code.

Most of the software for theUNIX time-sharing system [2] is written in C, as is the operating system itself. C is
also available on theHIS 6070 computer at Murray Hill and and on theIBM System/370 at Holmdel [3]. This paper
is a manual only for the C language itself as implemented on thePDP-11. However, hints are given occasionally in
the text of implementation-dependent features.

The UNIX Programmer’s Manual [4] describes the library routines available to C programs underUNIX, and also
the procedures for compiling programs under that system. ‘‘TheGCOSC Library’’ by Lesk and Barres [5] describes
routines available under that system as well as compilation procedures. Many of these routines, particularly the ones
having to do with I/O, are also provided underUNIX. Finally, ‘‘Programming in C− A Tutorial,’’ by B. W. Ker-
nighan [6], is as useful as promised by its title and the author’s previous introductions to allegedly impenetrable sub-
jects.

2. Lexical conventions

There are six kinds of tokens: identifiers, keywords, constants, strings, expression operators, and other separators.
In general blanks, tabs, newlines, and comments as described below are ignored except as they serve to separate to-
kens. At least one of these characters is required to separate otherwise adjacent identifiers, constants, and certain
operator-pairs.

If the input stream has been parsed into tokens up to a given character, the next token is taken to include the long-
est string of characters which could possibly constitute a token.

2.1 Comments
The characters/ * introduce a comment, which terminates with the characters* / .

2.2 Identifiers (Names)
An identifier is a sequence of letters and digits; the first character must be alphabetic. The underscore ‘‘_’’ counts

as alphabetic. Upper and lower case letters are considered different. No more than the first eight characters are sig-
nificant, and only the first seven for external identifiers.

2.3 Keywords
The following identifiers are reserved for use as keywords, and may not be used otherwise:

-

C Reference Manual - 2

int break
char continue
float if
double else
struct for
auto do
extern while
register switch
static case
goto default
return entry
sizeof

The entry keyword is not currently implemented by any compiler but is reserved for future use.

2.3 Constants
There are several kinds of constants, as follows:

2.3.1 Integer constants
An integer constant is a sequence of digits. An integer is taken to be octal if it begins with0, decimal otherwise.

The digits8 and9 have octal value 10 and 11 respectively.

2.3.2 Character constants
A character constant is 1 or 2 characters enclosed in single quotes ‘‘´ ’’. Within a character constant a single

quote must be preceded by a back-slash ‘‘\’’. Certain non-graphic characters, and ‘‘\’’ itself, may be escaped ac-
cording to the following table:

BS \b
NL \n
CR \r
HT \t
ddd \ddd
\ \\

The escape ‘‘\ddd’’ consists of the backslash followed by 1, 2, or 3 octal digits which are taken to specify the value
of the desired character. A special case of this construction is ‘‘\0’’ (not followed by a digit) which indicates a null
character.

Character constants behave exactly like integers (not, in particular, like objects of character type). In conformity
with the addressing structure of thePDP-11, a character constant of length 1 has the code for the given character in
the low-order byte and 0 in the high-order byte; a character constant of length 2 has the code for the first character in
the low byte and that for the second character in the high-order byte. Character constants with more than one char-
acter are inherently machine-dependent and should be avoided.

2.3.3 Floating constants
A floating constant consists of an integer part, a decimal point, a fraction part, ane, and an optionally signed inte-

ger exponent. The integer and fraction parts both consist of a sequence of digits. Either the integer part or the frac-
tion part (not both) may be missing; either the decimal point or thee and the exponent (not both) may be missing.
Every floating constant is taken to be double-precision.

2.4 Strings
A string is a sequence of characters surrounded by double quotes ‘‘" ’’. A string has the type array-of-characters

(see below) and refers to an area of storage initialized with the given characters. The compiler places a null byte
(\0) at the end of each string so that programs which scan the string can find its end. In a string, the character ‘‘" ’’
must be preceded by a ‘‘\’’ ; in addition, the same escapes as described for character constants may be used.

-

C Reference Manual - 3

3. Syntax notation

In the syntax notation used in this manual, syntactic categories are indicated byitalic type, and literal words and
characters ingothic. Alternatives are listed on separate lines. An optional terminal or non-terminal symbol is in-
dicated by the subscript ‘‘opt,’’ so that

{ expressionopt }

would indicate an optional expression in braces.

4. What’s in a Name?

C bases the interpretation of an identifier upon two attributes of the identifier: itsstorage classand itstype. The
storage class determines the location and lifetime of the storage associated with an identifier; the type determines the
meaning of the values found in the identifier’s storage.

There are four declarable storage classes: automatic, static, external, and register. Automatic variables are local to
each invocation of a function, and are discarded on return; static variables are local to a function, but retain their val-
ues independently of invocations of the function; external variables are independent of any function. Register vari-
ables are stored in the fast registers of the machine; like automatic variables they are local to each function and dis-
appear on return.

C supports four fundamental types of objects: characters, integers, single-, and double-precision floating-point
numbers.

Characters (declared, and hereinafter called,char) are chosen from theASCII set; they occupy the right-
most seven bits of an 8-bit byte. It is also possible to interpretchar s as signed, 2’s complement 8-bit
numbers.

Integers (int) are represented in 16-bit 2’s complement notation.

Single precision floating point (float) quantities have magnitude in the range approximately 10±38 or 0;
their precision is 24 bits or about seven decimal digits.

Double-precision floating-point (double) quantities have the same range asfloat s and a precision of 56
bits or about 17 decimal digits.

Besides the four fundamental types there is a conceptually infinite class of derived types constructed from the fun-
damental types in the following ways:

arraysof objects of most types;

functionswhich return objects of a given type;

pointersto objects of a given type;

structurescontaining objects of various types.

In general these methods of constructing objects can be applied recursively.

5. Objects and lvalues

An object is a manipulatable region of storage; an lvalue is an expression referring to an object. An obvious ex-
ample of an lvalue expression is an identifier. There are operators which yield lvalues: for example, if E is an ex-
pression of pointer type, then*E is an lvalue expression referring to the object to which E points. The name
‘‘lvalue’’ comes from the assignment expression ‘‘E1 = E2’’ in which the left operand E1 must be an lvalue expres-
sion. The discussion of each operator below indicates whether it expects lvalue operands and whether it yields an
lvalue.

6. Conversions

A number of operators may, depending on their operands, cause conversion of the value of an operand from one
type to another. This section explains the result to be expected from such conversions.

-

C Reference Manual - 4

6.1 Characters and integers
A char object may be used anywhere anint may be. In all cases thechar is converted to anint by propa-

gating its sign through the upper 8 bits of the resultant integer. This is consistent with the two’s complement repre-
sentation used for both characters and integers. (However, the sign-propagation feature disappears in other imple-
mentations.)

6.2 Float and double
All floating arithmetic in C is carried out in double-precision; whenever afloat appears in an expression it is

lengthened todouble by zero-padding its fraction. When adouble must be converted tofloat , for example by
an assignment, thedouble is rounded before truncation tofloat length.

6.3 Float and double; integer and character
All int s andchar s may be converted without loss of significance tofloat or double . Conversion of

float or double to int or char takes place with truncation towards 0. Erroneous results can be expected if the
magnitude of the result exceeds 32,767 (forint) or 127 (forchar).

6.4 Pointers and integers
Integers and pointers may be added and compared; in such a case theint is converted as specified in the discus-

sion of the addition operator.

Two pointers to objects of the same type may be subtracted; in this case the result is converted to an integer as
specified in the discussion of the subtraction operator.

7. Expressions

The precedence of expression operators is the same as the order of the major subsections of this section (highest
precedence first). Thus the expressions referred to as the operands of+ (§7.4) are those expressions defined in
§§7.1_7.3. Within each subsection, the operators have the same precedence. Left- or right-associativity is specified
in each subsection for the operators discussed therein. The precedence and associativity of all the expression opera-
tors is summarized in an appendix.

Otherwise the order of evaluation of expressions is undefined. In particular the compiler considers itself free to
compute subexpressions in the order it believes most efficient, even if the subexpressions involve side effects.

7.1 Primary expressions
Primary expressions involving. , −>, subscripting, and function calls group left to right.

7.1.1 identifier
An identifier is a primary expression, provided it has been suitably declared as discussed below. Its type is speci-

fied by its declaration. However, if the type of the identifier is ‘‘array of . . .’’, then the value of the identifier-
expression is a pointer to the first object in the array, and the type of the expression is ‘‘pointer to . . .’’. Moreover,
an array identifier is not an lvalue expression.

Likewise, an identifier which is declared ‘‘function returning . . .’’, when used except in the function-name posi-
tion of a call, is converted to ‘‘pointer to function returning . . .’’.

7.1.2 constant
A decimal, octal, character, or floating constant is a primary expression. Its type isint in the first three cases,

double in the last.

7.1.3 string
A string is a primary expression. Its type is originally ‘‘array ofchar ’’; but following the same rule as in §7.1.1

for identifiers, this is modified to ‘‘pointer tochar ’’ and the result is a pointer to the first character in the string.

7.1.4 (expression)
A parenthesized expression is a primary expression whose type and value are identical to those of the unadorned

expression. The presence of parentheses does not affect whether the expression is an lvalue.

-

C Reference Manual - 5

7.1.5 primary-expression[expression]
A primary expression followed by an expression in square brackets is a primary expression. The intuitive mean-

ing is that of a subscript. Usually, the primary expression has type ‘‘pointer to . . .’’, the subscript expression isint ,
and the type of the result is ‘‘. . . ’’. The expression ‘‘E1[E2]’’ is identical (by definition) to ‘‘* ((E1) + (E2)) ’’.
All the clues needed to understand this notation are contained in this section together with the discussions in §§
7.1.1, 7.2.1, and 7.4.1 on identifiers,* , and+ respectively; §14.3 below summarizes the implications.

7.1.6 primary-expression(expression-listopt)

A function call is a primary expression followed by parentheses containing a possibly empty, comma-separated
list of expressions which constitute the actual arguments to the function. The primary expression must be of type
‘‘function returning . . .’’, and the result of the function call is of type ‘‘. . . ’’. As indicated below, a hitherto unseen
identifier followed immediately by a left parenthesis is contextually declared to represent a function returning an in-
teger; thus in the most common case, integer-valued functions need not be declared.

Any actual arguments of typefloat are converted todouble before the call; any of typechar are converted
to int .

In preparing for the call to a function, a copy is made of each actual parameter; thus, all argument-passing in C is
strictly by value. A function may change the values of its formal parameters, but these changes cannot possibly af-
fect the values of the actual parameters. On the other hand, it is perfectly possible to pass a pointer on the under-
standing that the function may change the value of the object to which the pointer points.

Recursive calls to any function are permissible.

7.1.7 primary-lvalue. member-of-structure
An lvalue expression followed by a dot followed by the name of a member of a structure is a primary expression.

The object referred to by the lvalue is assumed to have the same form as the structure containing the structure mem-
ber. The result of the expression is an lvalue appropriately offset from the origin of the given lvalue whose type is
that of the named structure member. The given lvalue is not required to have any particular type.

Structures are discussed in §8.5.

7.1.8 primary-expression−> member-of-structure
The primary-expression is assumed to be a pointer which points to an object of the same form as the structure of

which the member-of-structure is a part. The result is an lvalue appropriately offset from the origin of the pointed-to
structure whose type is that of the named structure member. The type of the primary-expression need not in fact be
pointer; it is sufficient that it be a pointer, character, or integer.

Except for the relaxation of the requirement that E1 be of pointer type, the expression ‘‘E1−>MOS’’ is exactly
equivalent to ‘‘(*E1).MOS’’.

7.2 Unary operators
Expressions with unary operators group right-to-left.

7.2.1 * expression
The unary* operator meansindirection: the expression must be a pointer, and the result is an lvalue referring to

the object to which the expression points. If the type of the expression is ‘‘pointer to . . .’’, the type of the result is
‘‘ . . . ’’.

7.2.2 & lvalue-expression
The result of the unary& operator is a pointer to the object referred to by the lvalue-expression. If the type of the

lvalue-expression is ‘‘. . . ’’, the type of the result is ‘‘pointer to . . .’’.

7.2.3 − expression
The result is the negative of the expression, and has the same type. The type of the expression must bechar ,

int , float , ordouble .

-

C Reference Manual - 6

7.2.4 ! expression
The result of the logical negation operator! is 1 if the value of the expression is 0, 0 if the value of the expres-

sion is non-zero. The type of the result isint . This operator is applicable only toint s orchar s.

7.2.5 ~ expression
The˜ operator yields the one’s complement of its operand. The type of the expression must beint or char , and

the result isint .

7.2.6 ++lvalue-expression
The object referred to by the lvalue expression is incremented. The value is the new value of the lvalue expres-

sion and the type is the type of the lvalue. If the expression isint or char , it is incremented by 1; if it is a pointer
to an object, it is incremented by the length of the object. ++ is applicable only to these types. (Not, for example, to
float or double .)

7.2.7 −− lvalue-expression
The object referred to by the lvalue expression is decremented analogously to the ++ operator.

7.2.8 lvalue-expression ++
The result is the value of the object referred to by the lvalue expression. After the result is noted, the object re-

ferred to by the lvalue is incremented in the same manner as for the prefix ++ operator: by 1 for anint or char , by
the length of the pointed-to object for a pointer. The type of the result is the same as the type of the lvalue-
expression.

7.2.9 lvalue-expression −−
The result of the expression is the value of the object referred to by the the lvalue expression. After the result is

noted, the object referred to by the lvalue expression is decremented in a way analogous to the postfix ++ operator.

7.2.10 sizeof expression
The sizeof operator yields the size, in bytes, of its operand. When applied to an array, the result is the total

number of bytes in the array. The size is determined from the declarations of the objects in the expression. This ex-
pression is semantically an integer constant and may be used anywhere a constant is required. Its major use is in
communication with routines like storage allocators and I/O systems.

7.3 Multiplicative operators
The multiplicative operators* , / , and%group left-to-right.

7.3.1 expression* expression
The binary* operator indicates multiplication. If both operands areint or char , the result isint ; if one is

int or char and onefloat or double , the former is converted todouble , and the result isdouble ; if both
arefloat or double , the result isdouble . No other combinations are allowed.

7.3.2 expression/ expression
The binary/ operator indicates division. The same type considerations as for multiplication apply.

7.3.3 expression%expression
The binary%operator yields the remainder from the division of the first expression by the second. Both operands

must beint or char , and the result isint . In the current implementation, the remainder has the same sign as the
dividend.

7.4 Additive operators
The additive operators+ and− group left-to-right.

-

C Reference Manual - 7

7.4.1 expression+ expression
The result is the sum of the expressions. If both operands areint or char , the result isint . If both arefloat

or double , the result isdouble . If one ischar or int and one isfloat or double , the former is converted to
double and the result isdouble . If an int or char is added to a pointer, the former is converted by multiplying
it by the length of the object to which the pointer points and the result is a pointer of the same type as the original
pointer. Thus if P is a pointer to an object, the expression ‘‘P+1’’ is a pointer to another object of the same type as
the first and immediately following it in storage.

No other type combinations are allowed.

7.4.2 expression− expression
The result is the difference of the operands. If both operands areint , char , float , or double , the same type

considerations as for+ apply. If anint or char is subtracted from a pointer, the former is converted in the same
way as explained under+ above.

If two pointers to objects of the same type are subtracted, the result is converted (by division by the length of the
object) to anint representing the number of objects separating the pointed-to objects. This conversion will in gen-
eral give unexpected results unless the pointers point to objects in the same array, since pointers, even to objects of
the same type, do not necessarily differ by a multiple of the object-length.

7.5 Shift operators
The shift operators<< and>> group left-to-right.

7.5.1 expression<< expression
7.5.2 expression>> expression

Both operands must beint or char , and the result isint . The second operand should be non-negative. The
value of ‘‘E1<<E2’’ is E1 (interpreted as a bit pattern 16 bits long) left-shifted E2 bits; vacated bits are 0-filled. The
value of ‘‘E1>>E2’’ is E1 (interpreted as a two’s complement, 16-bit quantity) arithmetically right-shifted E2 bit po-
sitions. Vacated bits are filled by a copy of the sign bit of E1. [Note: the use of arithmetic rather than logical shift
does not survive transportation between machines.]

7.6 Relational operators
The relational operators group left-to-right, but this fact is not very useful; ‘‘a<b<c’’ does not mean what it seems

to.

7.6.1 expression< expression
7.6.2 expression> expression
7.6.3 expression<= expression
7.6.4 expression>= expression

The operators < (less than), > (greater than), <= (less than or equal to) and >= (greater than or equal to) all yield 0
if the specified relation is false and 1 if it is true. Operand conversion is exactly the same as for the+ operator ex-
cept that pointers of any kind may be compared; the result in this case depends on the relative locations in storage of
the pointed-to objects. It does not seem to be very meaningful to compare pointers with integers other than 0.

7.7 Equality operators
7.7.1 expression== expression
7.7.2 expression!= expression

The== (equal to) and the!= (not equal to) operators are exactly analogous to the relational operators except for
their lower precedence. (Thus ‘‘a<b == c<d’’ is 1 whenever a<b and c<d have the same truth-value).

7.8 expression& expression
The& operator groups left-to-right. Both operands must beint or char ; the result is anint which is the bit-

wise logicaland function of the operands.

-

C Reference Manual - 8

7.9 expression̂ expression
The ^ operator groups left-to-right. The operands must beint or char ; the result is anint which is the bit-

wise exclusiveor function of its operands.

7.10 expression| expression
The | operator groups left-to-right. The operands must beint or char ; the result is anint which is the bit-wise

inclusiveor of its operands.

7.11 expression&&expression
The && operator returns 1 if both its operands are non-zero, 0 otherwise. Unlike&, && guarantees left-to-right

evaluation; moreover the second operand is not evaluated if the first operand is 0.

The operands need not have the same type, but each must have one of the fundamental types or be a pointer.

7.12 expression|| expression
The || operator returns 1 if either of its operands is non-zero, and 0 otherwise. Unlike| , || guarantees left-to-right

evaluation; moreover, the second operand is not evaluated if the value of the first operand is non-zero.

The operands need not have the same type, but each must have one of the fundamental types or be a pointer.

7.13 expression? expression: expression
Conditional expressions group left-to-right. The first expression is evaluated and if it is non-zero, the result is the

value of the second expression, otherwise that of third expression. If the types of the second and third operand are
the same, the result has their common type; otherwise the same conversion rules as for+ apply. Only one of the sec-
ond and third expressions is evaluated.

7.14 Assignment operators
There are a number of assignment operators, all of which group right-to-left. All require an lvalue as their left

operand, and the type of an assignment expression is that of its left operand. The value is the value stored in the left
operand after the assignment has taken place.

7.14.1 lvalue= expression
The value of the expression replaces that of the object referred to by the lvalue. The operands need not have the

same type, but both must beint , char , float , double , or pointer. If neither operand is a pointer, the assign-
ment takes place as expected, possibly preceded by conversion of the expression on the right.

When both operands areint or pointers of any kind, no conversion ever takes place; the value of the expression
is simply stored into the object referred to by the lvalue. Thus it is possible to generate pointers which will cause ad-
dressing exceptions when used.

7.14.2 lvalue=+ expression
7.14.3 lvalue=− expression
7.14.4 lvalue=* expression
7.14.5 lvalue=/ expression
7.14.6 lvalue=% expression
7.14.7 lvalue=>> expression
7.14.8 lvalue=<< expression
7.14.9 lvalue=& expression
7.14.10lvalue=^ expression
7.14.11lvalue= | expression

The behavior of an expression of the form ‘‘E1 =op E2’’ may be inferred by taking it as equivalent to
‘‘E1 = E1 op E2’’; however, E1 is evaluated only once. Moreover, expressions like ‘‘i =+ p’’ in which a pointer is
added to an integer, are forbidden.

-

C Reference Manual - 9

7.15 expression, expression
A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression is dis-

carded. The type and value of the result are the type and value of the right operand. This operator groups left-to-
right. It should be avoided in situations where comma is given a special meaning, for example in actual arguments
to function calls (§7.1.6) and lists of initializers (§10.2).

8. Declarations

Declarations are used within function definitions to specify the interpretation which C gives to each identifier;
they do not necessarily reserve storage associated with the identifier. Declarations have the form

declaration:
decl-specifiers declarator-listopt ;

The declarators in the declarator-list contain the identifiers being declared. The decl-specifiers consist of at most
one type-specifier and at most one storage class specifier.

decl-specifiers:
type-specifier
sc-specifier
type-specifier sc-specifier
sc-specifier type-specifier

8.1 Storage class specifiers
The sc-specifiers are:

sc-specifier:
auto
static
extern
register

The auto, static, and register declarations also serve as definitions in that they cause an appropriate
amount of storage to be reserved. In theextern case there must be an external definition (see below) for the given
identifiers somewhere outside the function in which they are declared.

There are some severe restrictions onregister identifiers: there can be at most 3 register identifiers in any
function, and the type of a register identifier can only beint, char, or pointer (not float, double, struc-
ture, function, or array). Also the address-of operator& cannot be applied to such identifiers. Except for these re-
strictions (in return for which one is rewarded with faster, smaller code), register identifiers behave as if they were
automatic. In fact implementations of C are free to treatregister as synonymous withauto.

If the sc-specifier is missing from a declaration, it is generally taken to beauto .

8.2 Type specifiers
The type-specifiers are

type-specifier:
int
char
float
double
struct { type-decl-list }
struct identifier { type-decl-list }
struct identifier

Thestruct specifier is discussed in §8.5. If the type-specifier is missing from a declaration, it is generally taken
to beint .

-

C Reference Manual - 10

8.3 Declarators
The declarator-list appearing in a declaration is a comma-separated sequence of declarators.

declarator-list:
declarator
declarator, declarator-list

The specifiers in the declaration indicate the type and storage class of the objects to which the declarators refer.
Declarators have the syntax:

declarator:
identifier
* declarator
declarator()
declarator[constant-expressionopt]
(declarator)

The grouping in this definition is the same as in expressions.

8.4 Meaning of declarators
Each declarator is taken to be an assertion that when a construction of the same form as the declarator appears in

an expression, it yields an object of the indicated type and storage class. Each declarator contains exactly one identi-
fier; it is this identifier that is declared.

If an unadorned identifier appears as a declarator, then it has the type indicated by the specifier heading the decla-
ration.

If a declarator has the form

* D

for D a declarator, then the contained identifier has the type ‘‘pointer to . . .’’, where ‘‘. . . ’’ is the type which the
identifier would have had if the declarator had been simply D.

If a declarator has the form

D ()

then the contained identifier has the type ‘‘function returning ...’’, where ‘‘. . . ’’ is the type which the identifier
would have had if the declarator had been simply D.

A declarator may have the form

D[constant-expression]

or

D[]

In the first case the constant expression is an expression whose value is determinable at compile time, and whose
type is int. in the second the constant 1 is used. (Constant expressions are defined precisely in §15.) Such a
declarator makes the contained identifier have type ‘‘array.’’ If the unadorned declarator D would specify a non-
array of type ‘‘. . .’’, then the declarator ‘‘D[i]’’ yields a 1-dimensional array with ranki of objects of type ‘‘. . .’’. If
the unadorned declarator D would specify ann -dimensional array with ranki1 × i2 × . . .× in, then the declarator
‘‘D[i n+1]’’ yields an (n+1) -dimensional array with ranki1 × i2 × . . .× in × in+1.

An array may be constructed from one of the basic types, from a pointer, from a structure, or from another array
(to generate a multi-dimensional array).

Finally, parentheses in declarators do not alter the type of the contained identifier except insofar as they alter the
binding of the components of the declarator.

Not all the possibilities allowed by the syntax above are actually permitted. The restrictions are as follows: func-
tions may not return arrays, structures or functions, although they may return pointers to such things; there are no ar-
rays of functions, although there may be arrays of pointers to functions. Likewise a structure may not contain a
function, but it may contain a pointer to a function.

-

C Reference Manual - 11

As an example, the declaration

int i, * ip, f (), * fip(), (*pfi) ();

declares an integeri, a pointerip to an integer, a functionf returning an integer, a functionfip returning a pointer to
an integer, and a pointerpfi to a function which returns an integer. Also

float fa[17], *afp[17];

declares an array offloat numbers and an array of pointers tofloat numbers. Finally,

static int x3d[3][5][7];

declares a static three-dimensional array of integers, with rank 3×5×7. In complete detail,x3d is an array of three
items: each item is an array of five arrays; each of the latter arrays is an array of seven integers. Any of the expres-
sions ‘‘x3d’’, ‘‘x3d[i]’’, ‘‘x3d[i][j]’’, ‘‘x3d[i][j][k]’’ may reasonably appear in an expression. The first three
have type ‘‘array’’, the last has typeint .

8.5 Structure declarations
Recall that one of the forms for a structure specifier is

struct { type-decl-list }

Thetype-decl-listis a sequence of type declarations for the members of the structure:

type-decl-list:
type-declaration
type-declaration type-decl-list

A type declaration is just a declaration which does not mention a storage class (the storage class ‘‘member of struc-
ture’’ here being understood by context).

type-declaration:
type-specifier declarator-list;

Within the structure, the objects declared have addresses which increase as their declarations are read left-to-right.
Each component of a structure begins on an addressing boundary appropriate to its type. On thePDP-11 the only re-
quirement is that non-characters begin on a word boundary; therefore, there may be 1-byte, unnamed holes in a
structure, and all structures have an even length in bytes.

Another form of structure specifier is

struct identifier { type-decl-list }

This form is the same as the one just discussed, except that the identifier is remembered as thestructure tagof the
structure specified by the list. A subsequent declaration may then be given using the structure tag but without the
list, as in the third form of structure specifier:

struct identifier

Structure tags allow definition of self-referential structures; they also permit the long part of the declaration to be
given once and used several times. It is however absurd to declare a structure which contains an instance of itself, as
distinct from a pointer to an instance of itself.

A simple example of a structure declaration, taken from §16.2 where its use is illustrated more fully, is

struct tnode {
char tword[20];
int count;
struct tnode * left;
struct tnode * right;

};

which contains an array of 20 characters, an integer, and two pointers to similar structures. Once this declaration has

-

C Reference Manual - 12

been given, the following declaration makes sense:

struct tnode s, *sp;

which declaress to be a structure of the given sort andsp to be a pointer to a structure of the given sort.

The names of structure members and structure tags may be the same as ordinary variables, since a distinction can
be made by context. However, names of tags and members must be distinct. The same member name can appear in
different structures only if the two members are of the same type and if their origin with respect to their structure is
the same; thus separate structures can share a common initial segment.

9. Statements

Except as indicated, statements are executed in sequence.

9.1 Expression statement
Most statements are expression statements, which have the form

expression;

Usually expression statements are assignments or function calls.

9.2 Compound statement
So that several statements can be used where one is expected, the compound statement is provided:

compound-statement:
{ statement-list }

statement-list:
statement
statement statement-list

9.3 Conditional statement
The two forms of the conditional statement are

if (expression) statement
if (expression) statementelse statement

In both cases the expression is evaluated and if it is non-zero, the first substatement is executed. In the second case
the second substatement is executed if the expression is 0. As usual the ‘‘else’’ ambiguity is resolved by connecting
anelse with the last encountered elselessif .

9.4 While statement
Thewhile statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the expression remains non-zero. The test takes
place before each execution of the statement.

9.5 Do statement
Thedo statement has the form

do statementwhile (expression) ;

The substatement is executed repeatedly until the value of the expression becomes zero. The test takes place after
each execution of the statement.

-

C Reference Manual - 13

9.6 For statement
Thefor statement has the form

for (expression-1opt ; expression-2opt ; expression-3opt) statement

This statement is equivalent to

expression-1;
while (expression-2) {

statement
expression-3;

}

Thus the first expression specifies initialization for the loop; the second specifies a test, made before each iteration,
such that the loop is exited when the expression becomes 0; the third expression typically specifies an incrementa-
tion which is performed after each iteration.

Any or all of the expressions may be dropped. A missingexpression-2makes the impliedwhile clause equiva-
lent to ‘‘while(1)’’; other missing expressions are simply dropped from the expansion above.

9.7 Switch statement
Theswitch statement causes control to be transferred to one of several statements depending on the value of an

expression. It has the form

switch (expression) statement

The expression must beint or char . The statement is typically compound. Each statement within the statement
may be labelled with case prefixes as follows:

case constant-expression:

where the constant expression must beint or char . No two of the case constants in a switch may have the same
value. Constant expressions are precisely defined in §15.

There may also be at most one statement prefix of the form

default :

When theswitch statement is executed, its expression is evaluated and compared with each case constant in an un-
defined order. If one of the case constants is equal to the value of the expression, control is passed to the statement
following the matched case prefix. If no case constant matches the expression, and if there is adefault prefix,
control passes to the prefixed statement. In the absence of adefault prefix none of the statements in the switch is
executed.

Case or default prefixes in themselves do not alter the flow of control.

9.8 Break statement
The statement

break ;

causes termination of the smallest enclosingwhile , do , for , or switch statement; control passes to the state-
ment following the terminated statement.

9.9 Continue statement
The statement

continue ;

causes control to pass to the loop-continuation portion of the smallest enclosingwhile , do , or for statement; that
is to the end of the loop. More precisely, in each of the statements

-

C Reference Manual - 14

while (. . .) { do { for (. . .) {
.

contin: ; contin: ; contin: ;
} } while (. . .) ; }

acontinue is equivalent to ‘‘goto contin’’.

9.10 Return statement
A function returns to its caller by means of thereturn statement, which has one of the forms

return ;
return (expression) ;

In the first case no value is returned. In the second case, the value of the expression is returned to the caller of the
function. If required, the expression is converted, as if by assignment, to the type of the function in which it appears.
Flowing off the end of a function is equivalent to a return with no returned value.

9.11 Goto statement
Control may be transferred unconditionally by means of the statement

goto expression;

The expression should be a label (§§9.12, 14.4) or an expression of type ‘‘pointer toint ’’ which evaluates to a la-
bel. It is illegal to transfer to a label not located in the current function unless some extra-language provision has
been made to adjust the stack correctly.

9.12 Labelled statement
Any statement may be preceded by label prefixes of the form

identifier :

which serve to declare the identifier as a label. More details on the semantics of labels are given in §14.4 below.

9.13 Null statement
The null statement has the form

;

A null statement is useful to carry a label just before the ‘‘}’’ of a compound statement or to supply a null body to a
looping statement such aswhile .

10. External definitions

A C program consists of a sequence of external definitions. External definitions may be given for functions, for
simple variables, and for arrays. They are used both to declare and to reserve storage for objects. An external defi-
nition declares an identifier to have storage classextern and a specified type. The type-specifier (§8.2) may be
empty, in which case the type is taken to beint .

10.1 External function definitions
Function definitions have the form

function-definition:
type-specifieropt function-declarator function-body

A function declarator is similar to a declarator for a ‘‘function returning ...’’ except that it lists the formal parameters
of the function being defined.

function-declarator:
declarator(parameter-listopt)

parameter-list:

-

C Reference Manual - 15

identifier
identifier , parameter-list

The function-body has the form

function-body:
type-decl-list function-statement

The purpose of the type-decl-list is to give the types of the formal parameters. No other identifiers should be de-
clared in this list, and formal parameters should be declared only here.

The function-statement is just a compound statement which may have declarations at the start.

function-statement:
{ declaration-listopt statement-list }

A simple example of a complete function definition is

int max (a, b, c)
int a, b, c;
{

int m;
m = (a > b)? a : b ;
retur n (m > c? m : c) ;

}

Here ‘‘int’’ is the type-specifier; ‘‘max(a, b, c)’’ is the function-declarator; ‘‘int a, b, c;’’ is the type-decl-list for the
formal parameters; ‘‘{ . . . }’’ is the function-statement.

C converts all float actual parameters todouble , so formal parameters declaredfloat have their declara-
tion adjusted to readdouble . Also, since a reference to an array in any context (in particular as an actual parame-
ter) is taken to mean a pointer to the first element of the array, declarations of formal parameters declared ‘‘array of
...’’ are adjusted to read ‘‘pointer to ...’’. Finally, because neither structures nor functions can be passed to a func-
tion, it is useless to declare a formal parameter to be a structure or function (pointers to structures or functions are of
course permitted).

A free return statement is supplied at the end of each function definition, so running off the end causes control,
but no value, to be returned to the caller.

10.2 External data definitions
An external data definition has the form

data-definition:
extern opt type-specifieropt init-declarator-listopt ;

The optional extern specifier is discussed in § 11.2. If given, the init-declarator-list is a comma-separated list of
declarators each of which may be followed by an initializer for the declarator.

init-declarator-list:
init-declarator
init-declarator, init-declarator-list

init-declarator:
declarator initializeropt

Each initializer represents the initial value for the corresponding object being defined (and declared).

initializer:
constant
{ constant-expression-list }

-

C Reference Manual - 16

constant-expression-list:
constant-expression
constant-expression, constant-expression-list

Thus an initializer consists of a constant-valued expression, or comma-separated list of expressions, inside braces.
The braces may be dropped when the expression is just a plain constant. The exact meaning of a constant expression
is discussed in §15. The expression list is used to initialize arrays; see below.

The type of the identifier being defined should be compatible with the type of the initializer: adouble constant
may initialize afloat or double identifier; a non-floating-point expression may initialize anint , char , or
pointer.

An initializer for an array may contain a comma-separated list of compile-time expressions. The length of the ar-
ray is taken to be the maximum of the number of expressions in the list and the square-bracketed constant in the
array’s declarator. This constant may be missing, in which case 1 is used. The expressions initialize successive
members of the array starting at the origin (subscript 0) of the array. The acceptable expressions for an array of type
‘‘array of ...’’ are the same as those for type ‘‘...’’. As a special case, a single string may be given as the initializer
for an array ofchar s; in this case, the characters in the string are taken as the initializing values.

Structures can be initialized, but this operation is incompletely implemented and machine-dependent. Basically
the structure is regarded as a sequence of words and the initializers are placed into those words. Structure initializa-
tion, using a comma-separated list in braces, is safe if all the members of the structure are integers or pointers but is
otherwise ill-advised.

The initial value of any externally-defined object not explicitly initialized is guaranteed to be 0.

11. Scope rules

A complete C program need not all be compiled at the same time: the source text of the program may be kept in
several files, and precompiled routines may be loaded from libraries. Communication among the functions of a pro-
gram may be carried out both through explicit calls and through manipulation of external data.

Therefore, there are two kinds of scope to consider: first, what may be called thelexical scopeof an identifier,
which is essentially the region of a program during which it may be used without drawing ‘‘undefined identifier’’ di-
agnostics; and second, the scope associated with external identifiers, which is characterized by the rule that refer-
ences to the same external identifier are references to the same object.

11.1 Lexical scope
C is not a block-structured language; this may fairly be considered a defect. The lexical scope of names declared

in external definitions extends from their definition through the end of the file in which they appear. The lexical
scope of names declared at the head of functions (either as formal parameters or in the declarations heading the state-
ments constituting the function itself) is the body of the function.

It is an error to redeclare identifiers already declared in the current context, unless the new declaration specifies
the same type and storage class as already possessed by the identifiers.

11.2 Scope of externals
If a function declares an identifier to beextern , then somewhere among the files or libraries constituting the

complete program there must be an external definition for the identifier. All functions in a given program which re-
fer to the same external identifier refer to the same object, so care must be taken that the type and extent specified in
the definition are compatible with those specified by each function which references the data.

In PDP-11 C, it is explicitly permitted for (compatible) external definitions of the same identifier to be present in
several of the separately-compiled pieces of a complete program, or even twice within the same program file, with
the important limitation that the identifier may be initialized in at most one of the definitions. In other operating sys-
tems, however, the compiler must know in just which file the storage for the identifier is allocated, and in which file
the identifier is merely being referred to. In the implementations of C for such systems, the appearance of theex-
tern keyword before an external definition indicates that storage for the identifiers being declared will be allocated
in another file. Thus in a multi-file program, an external data definition without theextern specifier must appear
in exactly one of the files. Any other files which wish to give an external definition for the identifier must include
the extern in the definition. The identifier can be initialized only in the file where storage is allocated.

In PDP-11 C none of this nonsense is necessary and theextern specifier is ignored in external definitions.

-

C Reference Manual - 17

12. Compiler control lines

When a line of a C program begins with the character#, it is interpreted not by the compiler itself, but by a pre-
processor which is capable of replacing instances of given identifiers with arbitrary token-strings and of inserting
named files into the source program. In order to cause this preprocessor to be invoked, it is necessary that the very
first line of the program begin with#. Since null lines are ignored by the preprocessor, this line need contain no oth-
er information.

12.1 Token replacement
A compiler-control line of the form

define identifier token-string

(note: no trailing semicolon) causes the preprocessor to replace subsequent instances of the identifier with the given
string of tokens (except within compiler control lines). The replacement token-string has comments removed from
it, and it is surrounded with blanks. No rescanning of the replacement string is attempted. This facility is most valu-
able for definition of ‘‘manifest constants’’, as in

define tabsize 100
. . .
int table[tabsize];

12.2 File inclusion
Large C programs often contain many external data definitions. Since the lexical scope of external definitions ex-

tends to the end of the program file, it is good practice to put all the external definitions for data at the start of the
program file, so that the functions defined within the file need not repeat tedious and error-prone declarations for
each external identifier they use. It is also useful to put a heavily used structure definition at the start and use its
structure tag to declare theauto pointers to the structure used within functions. To further exploit this technique
when a large C program consists of several files, a compiler control line of the form

include " filename"

results in the replacement of that line by the entire contents of the filefilename.

13. Implicit declarations

It is not always necessary to specify both the storage class and the type of identifiers in a declaration. Sometimes
the storage class is supplied by the context: in external definitions, and in declarations of formal parameters and
structure members. In a declaration inside a function, if a storage class but no type is given, the identifier is assumed
to beint ; if a type but no storage class is indicated, the identifier is assumed to beauto . An exception to the latter
rule is made for functions, sinceauto functions are meaningless (C being incapable of compiling code into the
stack). If the type of an identifier is ‘‘function returning ...’’, it is implicitly declared to beextern .

In an expression, an identifier followed by(and not currently declared is contextually declared to be ‘‘function
returningint ’’.

Undefined identifiers not followed by(are assumed to be labels which will be defined later in the function.
(Since a label is not an lvalue, this accounts for the ‘‘Lvalue required’’ error message sometimes noticed when an
undeclared identifier is used.) Naturally, appearance of an identifier as a label declares it as such.

For some purposes it is best to consider formal parameters as belonging to their own storage class. In practice, C
treats parameters as if they were automatic (except that, as mentioned above, formal parameter arrays andfloat s
are treated specially).

14. Types revisited

This section summarizes the operations which can be performed on objects of certain types.

-

C Reference Manual - 18

14.1 Structures
There are only two things that can be done with a structure: pick out one of its members (by means of the. or

−> operators); or take its address (by unary&). Other operations, such as assigning from or to it or passing it as a
parameter, draw an error message. In the future, it is expected that these operations, but not necessarily others, will
be allowed.

14.2 Functions
There are only two things that can be done with a function: call it, or take its address. If the name of a function

appears in an expression not in the function-name position of a call, a pointer to the function is generated. Thus, to
pass one function to another, one might say

int f();
...
g(f);

Then the definition ofg might read

g (funcp)
int (* funcp) ();
{

. . .
(* funcp) ();
. . .

}

Notice thatf was declared explicitly in the calling routine since its first appearance was not followed by(.

14.3 Arrays, pointers, and subscripting
Every time an identifier of array type appears in an expression, it is converted into a pointer to the first member of

the array. Because of this conversion, arrays are not lvalues. By definition, the subscript operator[] is interpreted
in such a way that ‘‘E1[E2]’’ is identical to ‘‘* ((E1) + (E2))’’. Because of the conversion rules which apply to+, if
E1 is an array and E2 an integer, then E1[E2] refers to the E2-th member of E1. Therefore, despite its asymmetric
appearance, subscripting is a commutative operation.

A consistent rule is followed in the case of multi-dimensional arrays. If E is ann -dimensional array of rank
i × j × . . .×k, then E appearing in an expression is converted to a pointer to an (n−1)-dimensional array with rank
j × . . .×k. If the * operator, either explicitly or implicitly as a result of subscripting, is applied to this pointer, the re-
sult is the pointed-to (n−1)-dimensional array, which itself is immediately converted into a pointer.

For example, consider

int x[3][5];

Herex is a 3×5 array of integers. Whenx appears in an expression, it is converted to a pointer to (the first of three)
5-membered arrays of integers. In the expression ‘‘x[i]’’, which is equivalent to ‘‘* (x+i)’’, x is first converted to a
pointer as described; theni is converted to the type ofx, which involves multiplyingi by the length the object to
which the pointer points, namely 5 integer objects. The results are added and indirection applied to yield an array
(of 5 integers) which in turn is converted to a pointer to the first of the integers. If there is another subscript the
same argument applies again; this time the result is an integer.

It follows from all this that arrays in C are stored row-wise (last subscript varies fastest) and that the first subscript
in the declaration helps determine the amount of storage consumed by an array but plays no other part in subscript
calculations.

14.4 Labels
Labels do not have a type of their own; they are treated as having type ‘‘array ofint ’’. Label variables should be

declared ‘‘pointer toint ’’; before execution of agoto referring to the variable, a label (or an expression deriving
from a label) should be assigned to the variable.

Label variables are a bad idea in general; theswitch statement makes them almost always unnecessary.

-

C Reference Manual - 19

15. Constant expressions

In several places C requires expressions which evaluate to a constant: aftercase, as array bounds, and in ini-
tializers. In the first two cases, the expression can involve only integer constants, character constants, andsizeof
expressions, possibly connected by the binary operators

+ − * / % & | ˆ << >>

or by the unary operators

− ˜
Parentheses can be used for grouping, but not for function calls.

A bit more latitude is permitted for initializers; besides constant expressions as discussed above, one can also ap-
ply the unary& operator to external scalars, and to external arrays subscripted with a constant expression. The unary
& can also be applied implicitly by appearance of unsubscripted external arrays. The rule here is that initializers
must evaluate either to a constant or to the address of an external identifier plus or minus a constant.

16. Examples.

These examples are intended to illustrate some typical C constructions as well as a serviceable style of writing C
programs.

16.1 Inner product
This function returns the inner product of its array arguments.

double inner (v1, v2, n)
double v1 [] , v2 [] ;
{

double sum ;
int i ;
sum = 0.0 ;
for (i=0 ; i<n ; i ++)

sum =+ v1 [i] * v2 [i] ;
return (sum) ;

}

The following version is somewhat more efficient, but perhaps a little less clear. It uses the facts that parameter ar-
rays are really pointers, and that all parameters are passed by value.

double inner (v1, v2, n)
double *v1, *v2 ;
{

double sum ;
sum = 0.0 ;
while (n −−)

sum =+ *v1 ++ * * v2 ++ ;
return (sum) ;

}

The declarations for the parameters are really exactly the same as in the last example. In the first case array declara-
tions ‘‘ [] ’’ were given to emphasize that the parameters would be referred to as arrays; in the second, pointer dec-
larations were given because the indirection operator and ++ were used.

16.2 Tree and character processing
Here is a complete C program (courtesy of R. Haight) which reads a document and produces an alphabetized list

of words found therein together with the number of occurrences of each word. The method keeps a binary tree of
words such that the left descendant tree for each word has all the words lexicographically smaller than the given
word, and the right descendant has all the larger words. Both the insertion and the printing routine are recursive.

The program calls the library routinesgetchar to pick up characters andexit to terminate execution.Printf is

-

C Reference Manual - 20

called to print the results according to a format string. A version ofprintf is given below (§16.3) .

Because all the external definitions for data are given at the top, noextern declarations are necessary within the
functions. To stay within the rules, a type declaration is given for each non-integer function when the function is
used before it is defined. However, since all such functions return pointers which are simply assigned to other point-
ers, no actual harm would result from leaving out the declarations; the supposedlyint function values would be as-
signed without error or complaint.

define nwords 100 / * number of different words * /
define wsize 20 / * max chars per word * /
struct tnode { / * the basic structure * /

char tword [wsize] ;
int count ;
struct tnode * left ;
struct tnode * right ;

} ;

struct tnode space [nwords] ; / * the words themselves * /
int nnodes nwords ; / * number of remaining slots * /
struct tnode *spacep space ; / * next available slot * /
struct tnode * freep ; / * free list * /
/ *

* The main routine reads words until end-of-file (´\0´ returned from "getchar")

* "tree" is called to sort each word into the tree.

* /
main ()
{

struct tnode * top, * tree () ;
char c, word [wsize] ;
int i ;

i = top = 0 ;
while (c=getchar ())

if (´a´<=c && c<=´z´ || ´A´<=c && c <=´Z´) {
if (i<wsize −1)

word [i ++] = c ;
} else

if (i) {
word [i ++] = ´\0´ ;
top = tree (top, word) ;
i = 0 ;

}
tprint (top) ;

}
/ *

* The central routine. If the subtree pointer is null, allocate a new node for it.

* If the new word and the node´s word are the same, increase the node´s count.

* Otherwise, recursively sort the word into the left or right subtree according

* as the argument word is less or greater than the node´s word.

* /
struct tnode * tree (p, word)
struct tnode *p ;
char word [] ;
{

struct tnode *alloc () ;
int cond ;

/ * Is pointer null? * /
if (p ==0) {

p = alloc () ;

-

C Reference Manual - 21

copy (word, p −>tword) ;
p−>count = 1 ;
p−>right = p −>left = 0 ;
retur n (p) ;

}
/ * Is word repeated? * /
if ((cond=compar (p −>tword, word)) == 0) {

p−>count ++ ;
retur n (p) ;

}
/ * Sort into left or right * /
if (cond<0)

p−>left = tree (p −>left, word) ;
else

p−>right = tree (p −>right, word) ;
retur n (p) ;

}
/ *

* Print the tree by printing the left subtree, the given node, and the right subtre e

* /
tprin t (p)
struct tnode *p ;
{

while (p) {
tprint (p −>left) ;
printf ("%d: %s\n", p −>count, p −>tword) ;
p = p −>right ;

}
}
/ *

* String comparison: return number (>, =, <) 0

* according as s1 (>, =, <) s2.

* /
compar (s1, s2)
char *s1, *s2 ;
{

int c1, c2 ;

while ((c1 = *s1 ++) == (c2 = *s2 ++))
if (c1 ==´\0´)

retur n (0) ;
return (c2 −c1) ;

}
/ *

* String copy: copy s1 into s2 until the null

* character appears.

* /
copy (s1, s2)
char *s1, *s2 ;
{

while (*s2 ++ = *s1 ++) ;
}
/ *

* Node allocation: return pointer to a free node.

* Bomb out when all are gone. Just for fun, there

* is a mechanism for using nodes that have been

* freed, even though no one here calls "free."

* /
struct tnode *alloc ()

-

C Reference Manual - 22

{
struct tnode * t ;

if (freep) {
t = freep ;
freep = freep −>left ;
retur n (t) ;

}
if (−−nnodes < 0) {

printf ("Out of space\n") ;
exit () ;

}
return (spacep ++) ;

}
/ *

* The uncalled routine which puts a node on the free list.

* /
free (p)
struct tnode *p ;
{

p−>left = freep ;
freep = p ;

}

To illustrate a slightly different technique of handling the same problem, we will repeat fragments of this example
with the tree nodes treated explicitly as members of an array. The fundamental change is to deal with the subscript
of the array member under discussion, instead of a pointer to it. Thestruct declaration becomes

struct tnode {
char tword [wsize] ;
int count;
int left;
int right;

};

andalloc becomes

alloc ()
{

int t;

t = −−nnodes;
if (t<=0) {

printf ("Out of space\n") ;
exit () ;

}
retur n (t) ;

}

The freestuff has disappeared because if we deal with exclusively with subscripts some sort of map has to be kept,
which is too much trouble.

Now thetreeroutine returns a subscript also, and it becomes:

tree (p, word)
char word [] ;
{

int cond;

if (p ==0) {
p = alloc () ;
copy (word, spac e [p] .tword) ;

-

C Reference Manual - 23

spac e [p] .count = 1;
spac e [p] .right = spac e [p] .left = 0;
retur n (p) ;

}
if ((cond=compar (spac e [p] .tword, word)) == 0) {

spac e [p] .count ++;
retur n (p) ;

}
if (cond<0)

spac e [p] .left = tree (spac e [p] .left, word) ;
else

spac e [p] .right = tree (spac e [p] .right, word) ;
retur n (p) ;

}

The other routines are changed similarly. It must be pointed out that this version is noticeably less efficient than the
first because of the multiplications which must be done to compute an offset inspacecorresponding to the sub-
scripts.

The observation that subscripts (like ‘‘a [i] ’’) are less efficient than pointer indirection (like ‘‘*ap’’) holds true
independently of whether or not structures are involved. There are of course many situations where subscripts are
indispensable, and others where the loss in efficiency is worth a gain in clarity.

16.3 Formatted output
Here is a simplified version of theprintf routine, which is available in the C library. It accepts a string (character

array) as first argument, and prints subsequent arguments according to specifications contained in this format string.
Most characters in the string are simply copied to the output; two-character sequences beginning with ‘‘%’’ specify
that the next argument should be printed in a style as follows:

%d decimal number
%o octal number
%c ASCII character, or 2 characters if upper character is not null
%s string (null-terminated array of characters)
%f floating-point number

The actual parameters for each function call are laid out contiguously in increasing storage locations; therefore, a
function with a variable number of arguments may take the address of (say) its first argument, and access the re-
maining arguments by use of subscripting (regarding the arguments as an array) or by indirection combined with
pointer incrementation.

If in such a situation the arguments have mixed types, or if in general one wishes to insist that an lvalue should be
treated as having a given type, thenstruct declarations like those illustrated below will be useful. It should be
evident, though, that such techniques are implementation dependent.

Printf depends as well on the fact thatchar andfloat arguments are widened respectively toint anddou-
ble , so there are effectively only two sizes of arguments to deal with.Printf calls the library routinesputchar to
write out single characters andftoa to dispose of floating-point numbers.

printf (fmt, args)
char fmt [] ;
{

char *s ;
struct { char ** charpp ; };
struct { double *doublep ; };
int *ap, x, c ;

ap = &args ; / * argument pointer * /
for (; ;) {

while ((c = * fmt ++) != ´%´) {
if (c == ´\0´)

return ;

-

C Reference Manual - 24

putcha r (c) ;
}
switch (c = * fmt ++) {
/ * decimal * /
case ´d ´:

x = *ap++ ;
if (x < 0) {

x = −x ;
if (x<0) { / * is − infinity * /

printf (" −32768") ;
continue ;

}
putchar (´ −´) ;

}
print d (x) ;
continue ;

/ * octal * /
case ´o´:

printo (*ap++) ;
continue ;

/ * float, double * /
case ´f ´:

/ * let ftoa do the real work * /
ftoa (*ap.doublep ++) ;
continue ;

/ * character * /
case ´c´:

putchar (*ap++) ;
continue ;

/ * string * /
case ´s´:

s = *ap.charpp ++ ;
while (c = *s++)

putcha r (c) ;
continue ;

}
putcha r (c) ;

}
}
/ *

* Print n in decimal ; n must be non-negative

* /
print d (n)
{

int a ;
if (a=n/10)

print d (a) ;
putchar (n%10 + ´0´) ;

}
/ *

* Print n in octal, with exactly 1 leading 0

* /
print o (n)
{

if (n)
printo ((n>>3) &017777) ;

putchar ((n&07) +´0´) ;
}

-

C Reference Manual - 25

REFERENCES

1. Johnson, S. C., and Kernighan, B. W. ‘‘The Programming Language B.’’ Comp. Sci. Tech. Rep. #8., Bell Lab-
oratories, 1972.

2. Ritchie, D. M., and Thompson, K. L. ‘‘TheUNIX Time-sharing System.’’ C. ACM7, 17, July, 1974, pp.
365-375.

3. Peterson, T. G., and Lesk, M. E. ‘‘A User’s Guide to the C Language on the IBM 370.’’ Internal Memoran-
dum, Bell Laboratories, 1974.

4. Thompson, K. L., and Ritchie, D. M.UNIX Programmer’s Manual.Bell Laboratories, 1973.

5. Lesk, M. E., and Barres, B. A. ‘‘TheGCOSC Library.’’ Internal memorandum, Bell Laboratories, 1974.

6. Kernighan, B. W. ‘‘Programming in C− A Tutorial.’’ Unpublished internal memorandum, Bell Laboratories,
1974.

-

C Reference Manual - 26

APPENDIX 1

Syntax Summary

1. Expressions.

expression:
primary
* expression
& expression
− expression
! expression

˜ expression
++ lvalue
−− lvalue
lvalue++
lvalue−−
sizeof expression
expression binop expression
expression? expression: expression
lvalue asgnop expression
expression, expression

primary:
identifier
constant
string
(expression)
primary (expression-listopt)
primary [expression]
lvalue. identifier
primary > identifier

lvalue:
identifier
primary [expression]
lvalue. identifier
primary > identifier
* expression
(lvalue)

The primary-expression operators

() [] . >

have highest priority and group left-to-right. The unary operators

& − ! ~ ++ −− sizeof

have priority below the primary operators but higher than any binary operator, and group right-to-left. Bi-
nary operators and the conditional operator all group left-to-right, and have priority decreasing as indicated:

binop:
* / %
+ −
>> <<
< > <= >=
== !=
&

-

C Reference Manual - 27

^
|
&&
||
? :

Assignment operators all have the same priority, and all group right-to-left.

asgnop:
= =+ =− =* =/ =% =>> =<< =& =^ = |

The comma operator has the lowest priority, and groups left-to-right.

2. Declarations.

declaration:
decl-specifiers declarator-listopt ;

decl-specifiers:
type-specifier
sc-specifier
type-specifier sc-specifier
sc-specifier type-specifier

sc-specifier:
auto
static
extern
register

type-specifier:
int
char
float
double
struct { type-decl-list }
struct identifier { type-decl-list }
struct identifier

declarator-list:
declarator
declarator, declarator-list

declarator:
identifier
* declarator
declarator()
declarator[constant-expressionopt]
(declarator)

type-decl-list:
type-declaration
type-declaration type-decl-list

type-declaration:
type-specifier declarator-list;

3. Statements.

statement:
expression;
{ statement-list }

-

C Reference Manual - 28

if (expression) statement
if (expression) statementelse statement
while (expression) statement
for (expressionopt ; expressionopt ; expressionopt) statement
switch (expression) statement
case constant-expression: statement
default : statement
break ;
continue ;
return ;
return (expression) ;
goto expression;
identifier : statement
;

statement-list:
statement
statement statement-list

4. External definitions.

program:
external-definition
external-definition program

external-definition:
function-definition
data-definition

function-definition:
type-specifieropt function-declarator function-body

function-declarator:
declarator(parameter-listopt)

parameter-list:
identifier
identifier , parameter-list

function-body:
type-decl-list function-statement

function-statement:
{ declaration-listopt statement-list }

data-definition:
extern opt type-specifieropt init-declarator-listopt ;

init-declarator-list:
init-declarator
init-declarator, init-declarator-list

init-declarator:
declarator initializeropt

initializer:
constant
{ constant-expression-list }

-

C Reference Manual - 29

constant-expression-list:
constant-expression
constant-expression, constant-expression-list

constant-expression:
expression

5. Preprocessor

define identifier token-string

include " filename"

-

C Reference Manual - 30

APPENDIX 2
Implementation Peculiarities

This Appendix briefly summarizes the differences between the implementations of C on thePDP-11 underUNIX and
on theHIS 6070 underGCOS; it includes some known bugs in each implementation. Each entry is keyed by an indi-
cator as follows:

h hard to fix
g GCOSversion should probably be changed
u UNIX version should probably be changed
d Inherent difference likely to remain

This list was prepared by M. E. Lesk, S. C. Johnson, E. N. Pinson, and the author.

A. Bugs or differences from C language specifications

hg A.1) GCOSdoes not do type conversions in ‘‘?:’’.
hg A.2) GCOShas a bug inint andreal comparisons; the numbers are compared by subtraction, and

the difference must not overflow.
g A.3) Whenx is afloat , the construction ‘‘test ? −x : x’’ is illegal onGCOS.
hg A.4) ‘‘p1−>p2 =+ 2’’ causes a compiler error, where p1 and p2 are pointers.
u A.5) OnUNIX, the expression in areturn statement isnot converted to the type of the function, as

promised.
hug A.6) entry statement is not implemented at all.

B. Implementation differences

d B.1) Sizes of character constants differ;UNIX: 2, GCOS: 4.
d B.2) Table sizes in compilers differ.
d B.3) char s andint s have different sizes;char s are 8 bits onUNIX, 9 onGCOS; words are 16 bits

on UNIX and 36 onGCOS. There are corresponding differences in representations offloat s
anddouble s.

d B.4) Character arrays stored left to right in a word inGCOS, right to left inUNIX.
g B.5) Passing of floats and doubles differs;UNIX passes on stack,GCOSpasses pointer (hidden to nor-

mal user).
g B.6) Structures and strings are aligned on a word boundary inUNIX, not aligned inGCOS.
g B.7) GCOSpreprocessor supports #rename, #escape;UNIX has only #define, #include.
u B.8) Preprocessor is not invoked onUNIX unless first character of file is ‘‘#’’.
u B.9) The external definition ‘‘static int . . .’’ is legal onGCOS, but gets a diagnostic onUNIX. (On

GCOSit means an identifier global to the routines in the file but invisible to routines compiled
separately.)

g B.10) A compound statement onGCOSmust contain one ‘‘;’’ but onUNIX may be empty.
g B.11) OnGCOScase distinctions in identifiers and keywords are ignored; onUNIX case is significant

everywhere, with keywords in lower case.

C. Syntax Differences

g C.1) UNIX allows broader classes of initialization; onGCOSan initializer must be a constant, name,
or string. Similarly,GCOSis much stickier about wanting braces around initializers and in par-
ticular they must be present for array initialization.

g C.2) ‘‘int extern’’ illegal onGCOS; must have ‘‘extern int’’ (storage class before type).
g C.3) Externals onGCOSmust have a type (not defaulted toint).
u C.4) GCOSallows initialization of internalstatic (same syntax as for external definitions).
g C.5) integer−>... is not allowed onGCOS.
g C.6) Some operators on pointers are illegal onGCOS(<, >).

-

C Reference Manual - 31

g C.7) register storage class means something onUNIX, but is not accepted onGCOS.
g C.8) Scope holes: ‘‘int x; f () {int x;}’’ is illegal onUNIX but defines two variables onGCOS.
g C.9) When function names are used as arguments onUNIX, either ‘‘fname’’ or ‘‘&fname’’ may be

used to get a pointer to the function; onGCOS‘‘&fname’’ generates a doubly-indirect pointer.
(Note that both are wrong since the ‘‘&’’ is supposed to be supplied for free.)

D. Operating System Dependencies

d D.1) GCOSallocates external scalars by SYMREF;UNIX allocates external scalars as labelled com-
mon; as a result there may be many uninitialized external definitions of the same variable on
UNIX but only one onGCOS.

d D.2) External names differ in allowable length and character set; onUNIX, 7 characters and both
cases; onGCOS6 characters and only one case.

E. Semantic Differences

hg E.1) ‘‘int i, *p; p=i; i=p;’’ does nothing onUNIX, does something onGCOS(destroys right half of i) .
d E.2) ‘‘>>’’ means arithmetic shift onUNIX, logical onGCOS.
d E.3) When achar is converted to integer, the result is always positive onGCOSbut can be negative

on UNIX.
d E.4) Arguments of subroutines are evaluated left-to-right onGCOS, right-to-left onUNIX.

Lint, a C Program Checker

S. C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Lint is a command which examines C source programs, detecting a number of
bugs and obscurities. It enforces the type rules of C more strictly than the C com-
pilers. It may also be used to enforce a number of portability restrictions involved in
moving programs between different machines and/or operating systems. Another
option detects a number of wasteful, or error prone, constructions which nevertheless
are, strictly speaking, legal.

Lint accepts multiple input files and library specifications, and checks them for
consistency.

The separation of function between lint and the C compilers has both historical
and practical rationale. The compilers turn C programs into executable files rapidly
and efficiently. This is possible in part because the compilers do not do sophisticated
type checking, especially between separately compiled programs. Lint takes a more
global, leisurely view of the program, looking much more carefully at the compatibili-
ties.

This document discusses the use of lint , gives an overview of the implementa-
tion, and gives some hints on the writing of machine independent C code.

July 26, 1978

Lint, a C Program Checker

S. C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction and Usage

Suppose there are two C1 source files, file1. c and file2.c , which are ordinarily compiled and
loaded together. Then the command

lint file1.c file2.c

produces messages describing inconsistencies and inefficiencies in the programs. The program enforces
the typing rules of C more strictly than the C compilers (for both historical and practical reasons)
enforce them. The command

lint – p file1.c file2.c

will produce, in addition to the above messages, additional messages which relate to the portability of
the programs to other operating systems and machines. Replacing the – p by – h will produce messages
about various error-prone or wasteful constructions which, strictly speaking, are not bugs. Saying – hp
gets the whole works.

The next several sections describe the major messages; the document closes with sections discuss-
ing the implementation and giving suggestions for writing portable C. An appendix gives a summary of
the lint options.

A Word About Philosophy

Many of the facts which lint needs may be impossible to discover. For example, whether a given
function in a program ever gets called may depend on the input data. Deciding whether exit is ever
called is equivalent to solving the famous ‘‘halting problem,’’ known to be recursively undecidable.

Thus, most of the lint algorithms are a compromise. If a function is never mentioned, it can
never be called. If a function is mentioned, lint assumes it can be called; this is not necessarily so, but
in practice is quite reasonable.

Lint tries to give information with a high degree of relevance. Messages of the form ‘‘xxx might
be a bug’’ are easy to generate, but are acceptable only in proportion to the fraction of real bugs they
uncover. If this fraction of real bugs is too small, the messages lose their credibility and serve merely to
clutter up the output, obscuring the more important messages.

Keeping these issues in mind, we now consider in more detail the classes of messages which lint
produces.

Unused Variables and Functions

As sets of programs evolve and develop, previously used variables and arguments to functions
may become unused; it is not uncommon for external variables, or even entire functions, to become
unnecessary, and yet not be removed from the source. These ‘‘errors of commission’’ rarely cause
working programs to fail, but they are a source of inefficiency, and make programs harder to understand
and change. Moreover, information about such unused variables and functions can occasionally serve to
discover bugs; if a function does a necessary job, and is never called, something is wrong!

Lint complains about variables and functions which are defined but not otherwise mentioned. An
exception is variables which are declared through explicit extern statements but are never referenced;

- 2 -

thus the statement

extern float sin();

will evoke no comment if sin is never used. Note that this agrees with the semantics of the C compiler.
In some cases, these unused external declarations might be of some interest; they can be discovered by
adding the – x flag to the lint invocation.

Certain styles of programming require many functions to be written with similar interfaces; fre-
quently, some of the arguments may be unused in many of the calls. The – v option is available to
suppress the printing of complaints about unused arguments. When – v is in effect, no messages are
produced about unused arguments except for those arguments which are unused and also declared as
register arguments; this can be considered an active (and preventable) waste of the register resources of
the machine.

There is one case where information about unused, or undefined, variables is more distracting than
helpful. This is when lint is applied to some, but not all, files out of a collection which are to be loaded
together. In this case, many of the functions and variables defined may not be used, and, conversely,
many functions and variables defined elsewhere may be used. The – u flag may be used to suppress the
spurious messages which might otherwise appear.

Set/Used Information

Lint attempts to detect cases where a variable is used before it is set. This is very difficult to do
well; many algorithms take a good deal of time and space, and still produce messages about perfectly
valid programs. Lint detects local variables (automatic and register storage classes) whose first use
appears physically earlier in the input file than the first assignment to the variable. It assumes that tak-
ing the address of a variable constitutes a ‘‘use,’’ since the actual use may occur at any later time, in a
data dependent fashion.

The restriction to the physical appearance of variables in the file makes the algorithm very simple
and quick to implement, since the true flow of control need not be discovered. It does mean that lint
can complain about some programs which are legal, but these programs would probably be considered
bad on stylistic grounds (e.g. might contain at least two goto’s). Because static and external variables
are initialized to 0, no meaningful information can be discovered about their uses. The algorithm deals
correctly, however, with initialized automatic variables, and variables which are used in the expression
which first sets them.

The set/used information also permits recognition of those local variables which are set and never
used; these form a frequent source of inefficiencies, and may also be symptomatic of bugs.

Flow of Control

Lint attempts to detect unreachable portions of the programs which it processes. It will complain
about unlabeled statements immediately following goto, break, continue, or return statements. An
attempt is made to detect loops which can never be left at the bottom, detecting the special cases while(
1) and for(;;) as infinite loops. Lint also complains about loops which cannot be entered at the top;
some valid programs may have such loops, but at best they are bad style, at worst bugs.

Lint has an important area of blindness in the flow of control algorithm: it has no way of detect-
ing functions which are called and never return. Thus, a call to exit may cause unreachable code which
lint does not detect; the most serious effects of this are in the determination of returned function values
(see the next section).

One form of unreachable statement is not usually complained about by lint; a break statement
that cannot be reached causes no message. Programs generated by yacc ,2 and especially lex ,3 may have
literally hundreds of unreachable break statements. The – O flag in the C compiler will often eliminate
the resulting object code inefficiency. Thus, these unreached statements are of little importance, there is
typically nothing the user can do about them, and the resulting messages would clutter up the lint out-
put. If these messages are desired, lint can be invoked with the – b option.

- 3 -

Function Values

Sometimes functions return values which are never used; sometimes programs incorrectly use
function ‘‘values’’ which have never been returned. Lint addresses this problem in a number of ways.

Locally, within a function definition, the appearance of both

return(expr);

and

return ;

statements is cause for alarm; lint will give the message

function name contains return(e) and return

The most serious difficulty with this is detecting when a function return is implied by flow of control
reaching the end of the function. This can be seen with a simple example:

f (a) {
if (a) return (3);
g ();
}

Notice that, if a tests false, f will call g and then return with no defined return value; this will trigger a
complaint from lint . If g, like exit, never returns, the message will still be produced when in fact noth-
ing is wrong.

In practice, some potentially serious bugs have been discovered by this feature; it also accounts for
a substantial fraction of the ‘‘noise’’ messages produced by lint .

On a global scale, lint detects cases where a function returns a value, but this value is sometimes,
or always, unused. When the value is always unused, it may constitute an inefficiency in the function
definition. When the value is sometimes unused, it may represent bad style (e.g., not testing for error
conditions).

The dual problem, using a function value when the function does not return one, is also detected.
This is a serious problem. Amazingly, this bug has been observed on a couple of occasions in ‘‘work-
ing’’ programs; the desired function value just happened to have been computed in the function return
register!

Type Checking

Lint enforces the type checking rules of C more strictly than the compilers do. The additional
checking is in four major areas: across certain binary operators and implied assignments, at the structure
selection operators, between the definition and uses of functions, and in the use of enumerations.

There are a number of operators which have an implied balancing between types of the operands.
The assignment, conditional (? :), and relational operators have this property; the argument of a return
statement, and expressions used in initialization also suffer similar conversions. In these operations,
char, short, int, long, unsigned, float, and double types may be freely intermixed. The types of
pointers must agree exactly, except that arrays of x’s can, of course, be intermixed with pointers to x’s.

The type checking rules also require that, in structure references, the left operand of the —> be a
pointer to structure, the left operand of the . be a structure, and the right operand of these operators be a
member of the structure implied by the left operand. Similar checking is done for references to unions.

Strict rules apply to function argument and return value matching. The types float and double
may be freely matched, as may the types char, short, int, and unsigned. Also, pointers can be matched
with the associated arrays. Aside from this, all actual arguments must agree in type with their declared
counterparts.

With enumerations, checks are made that enumeration variables or members are not mixed with
other types, or other enumerations, and that the only operations applied are =, initialization, ==, !=, and

- 4 -

function arguments and return values.

Type Casts

The type cast feature in C was introduced largely as an aid to producing more portable programs.
Consider the assignment

p = 1 ;

where p is a character pointer. Lint will quite rightly complain. Now, consider the assignment

p = (char ∗)1 ;

in which a cast has been used to convert the integer to a character pointer. The programmer obviously
had a strong motivation for doing this, and has clearly signaled his intentions. It seems harsh for lint to
continue to complain about this. On the other hand, if this code is moved to another machine, such
code should be looked at carefully. The – c flag controls the printing of comments about casts. When
– c is in effect, casts are treated as though they were assignments subject to complaint; otherwise, all
legal casts are passed without comment, no matter how strange the type mixing seems to be.

Nonportable Character Use

On the PDP-11, characters are signed quantities, with a range from – 128 to 127. On most of the
other C implementations, characters take on only positive values. Thus, lint will flag certain comparis-
ons and assignments as being illegal or nonportable. For example, the fragment

char c;
...

if((c = getchar()) < 0)

works on the PDP-11, but will fail on machines where characters always take on positive values. The
real solution is to declare c an integer, since getchar is actually returning integer values. In any case,
lint will say ‘‘nonportable character comparison’’.

A similar issue arises with bitfields; when assignments of constant values are made to bitfields, the
field may be too small to hold the value. This is especially true because on some machines bitfields are
considered as signed quantities. While it may seem unintuitive to consider that a two bit field declared
of type int cannot hold the value 3, the problem disappears if the bitfield is declared to have type
unsigned.

Assignments of longs to ints

Bugs may arise from the assignment of long to an int, which loses accuracy. This may happen in
programs which have been incompletely converted to use typedefs. When a typedef variable is changed
from int to long, the program can stop working because some intermediate results may be assigned to
ints, losing accuracy. Since there are a number of legitimate reasons for assigning longs to ints, the
detection of these assignments is enabled by the – a flag.

Strange Constructions

Several perfectly legal, but somewhat strange, constructions are flagged by lint; the messages
hopefully encourage better code quality, clearer style, and may even point out bugs. The – h flag is used
to enable these checks. For example, in the statement

∗p++ ;

the ∗ does nothing; this provokes the message ‘‘null effect’’ from lint . The program fragment

unsigned x ;
if(x < 0) ...

is clearly somewhat strange; the test will never succeed. Similarly, the test

- 5 -

if(x > 0) ...

is equivalent to

if(x != 0)

which may not be the intended action. Lint will say ‘‘degenerate unsigned comparison’’ in these cases.
If one says

if(1 != 0)

lint will report ‘‘constant in conditional context’’, since the comparison of 1 with 0 gives a constant
result.

Another construction detected by lint involves operator precedence. Bugs which arise from
misunderstandings about the precedence of operators can be accentuated by spacing and formatting,
making such bugs extremely hard to find. For example, the statements

if(x&077 == 0) ...

or

x< <2 + 40

probably do not do what was intended. The best solution is to parenthesize such expressions, and lint
encourages this by an appropriate message.

Finally, when the – h flag is in force lint complains about variables which are redeclared in inner
blocks in a way that conflicts with their use in outer blocks. This is legal, but is considered by many
(including the author) to be bad style, usually unnecessary, and frequently a bug.

Ancient History

There are several forms of older syntax which are being officially discouraged. These fall into
two classes, assignment operators and initialization.

The older forms of assignment operators (e.g., =+, =– , . . .) could cause ambiguous expressions,
such as

a =– 1 ;

which could be taken as either

a =– 1 ;

or

a = – 1 ;

The situation is especially perplexing if this kind of ambiguity arises as the result of a macro substitu-
tion. The newer, and preferred operators (+=, – =, etc.) have no such ambiguities. To spur the aban-
donment of the older forms, lint complains about these old fashioned operators.

A similar issue arises with initialization. The older language allowed

int x 1 ;

to initialize x to 1. This also caused syntactic difficulties: for example,

int x (– 1) ;

looks somewhat like the beginning of a function declaration:

int x (y) { . . .

and the compiler must read a fair ways past x in order to sure what the declaration really is.. Again, the
problem is even more perplexing when the initializer involves a macro. The current syntax places an
equals sign between the variable and the initializer:

- 6 -

int x = – 1 ;

This is free of any possible syntactic ambiguity.

Pointer Alignment

Certain pointer assignments may be reasonable on some machines, and illegal on others, due
entirely to alignment restrictions. For example, on the PDP-11, it is reasonable to assign integer
pointers to double pointers, since double precision values may begin on any integer boundary. On the
Honeywell 6000, double precision values must begin on even word boundaries; thus, not all such assign-
ments make sense. Lint tries to detect cases where pointers are assigned to other pointers, and such
alignment problems might arise. The message ‘‘possible pointer alignment problem’’ results from this
situation whenever either the – p or – h flags are in effect.

Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate subexpressions may be highly
machine dependent. For example, on machines (like the PDP-11) in which the stack runs backwards,
function arguments will probably be best evaluated from right-to-left; on machines with a stack running
forward, left-to-right seems most attractive. Function calls embedded as arguments of other functions
may or may not be treated similarly to ordinary arguments. Similar issues arise with other operators
which have side effects, such as the assignment operators and the increment and decrement operators.

In order that the efficiency of C on a particular machine not be unduly compromised, the C
language leaves the order of evaluation of complicated expressions up to the local compiler, and, in fact,
the various C compilers have considerable differences in the order in which they will evaluate compli-
cated expressions. In particular, if any variable is changed by a side effect, and also used elsewhere in
the same expression, the result is explicitly undefined.

Lint checks for the important special case where a simple scalar variable is affected. For exam-
ple, the statement

a[i] = b[i++] ;

will draw the complaint:

warning: i evaluation order undefined

Implementation

Lint consists of two programs and a driver. The first program is a version of the Portable C Com-
piler45 which is the basis of the IBM 370, Honeywell 6000, and Interdata 8/32 C compilers. This com-
piler does lexical and syntax analysis on the input text, constructs and maintains symbol tables, and
builds trees for expressions. Instead of writing an intermediate file which is passed to a code generator,
as the other compilers do, lint produces an intermediate file which consists of lines of ascii text. Each
line contains an external variable name, an encoding of the context in which it was seen (use, definition,
declaration, etc.), a type specifier, and a source file name and line number. The information about vari-
ables local to a function or file is collected by accessing the symbol table, and examining the expression
trees.

Comments about local problems are produced as detected. The information about external names
is collected onto an intermediate file. After all the source files and library descriptions have been col-
lected, the intermediate file is sorted to bring all information collected about a given external name
together. The second, rather small, program then reads the lines from the intermediate file and compares
all of the definitions, declarations, and uses for consistency.

The driver controls this process, and is also responsible for making the options available to both
passes of lint .

- 7 -

Portability

C on the Honeywell and IBM systems is used, in part, to write system code for the host operating
system. This means that the implementation of C tends to follow local conventions rather than adhere
strictly to UNIX† system conventions. Despite these differences, many C programs have been success-
fully moved to GCOS and the various IBM installations with little effort. This section describes some
of the differences between the implementations, and discusses the lint features which encourage porta-
bility.

Uninitialized external variables are treated differently in different implementations of C. Suppose
two files both contain a declaration without initialization, such as

int a ;

outside of any function. The UNIX loader will resolve these declarations, and cause only a single word
of storage to be set aside for a. Under the GCOS and IBM implementations, this is not feasible (for
various stupid reasons!) so each such declaration causes a word of storage to be set aside and called a.
When loading or library editing takes place, this causes fatal conflicts which prevent the proper opera-
tion of the program. If lint is invoked with the – p flag, it will detect such multiple definitions.

A related difficulty comes from the amount of information retained about external names during
the loading process. On the UNIX system, externally known names have seven significant characters,
with the upper/lower case distinction kept. On the IBM systems, there are eight significant characters,
but the case distinction is lost. On GCOS, there are only six characters, of a single case. This leads to
situations where programs run on the UNIX system, but encounter loader problems on the IBM or GCOS
systems. Lint – p causes all external symbols to be mapped to one case and truncated to six characters,
providing a worst-case analysis.

A number of differences arise in the area of character handling: characters in the UNIX system are
eight bit ascii, while they are eight bit ebcdic on the IBM, and nine bit ascii on GCOS. Moreover, char-
acter strings go from high to low bit positions (‘‘left to right’’) on GCOS and IBM, and low to high
(‘‘right to left’’) on the PDP-11. This means that code attempting to construct strings out of character
constants, or attempting to use characters as indices into arrays, must be looked at with great suspicion.
Lint is of little help here, except to flag multi-character character constants.

Of course, the word sizes are different! This causes less trouble than might be expected, at least
when moving from the UNIX system (16 bit words) to the IBM (32 bits) or GCOS (36 bits). The main
problems are likely to arise in shifting or masking. C now supports a bit-field facility, which can be
used to write much of this code in a reasonably portable way. Frequently, portability of such code can
be enhanced by slight rearrangements in coding style. Many of the incompatibilities seem to have the
flavor of writing

x &= 0177700 ;

to clear the low order six bits of x. This suffices on the PDP-11, but fails badly on GCOS and IBM. If
the bit field feature cannot be used, the same effect can be obtained by writing

x &= ∼ 077 ;

which will work on all these machines.

The right shift operator is arithmetic shift on the PDP-11, and logical shift on most other
machines. To obtain a logical shift on all machines, the left operand can be typed unsigned. Characters
are considered signed integers on the PDP-11, and unsigned on the other machines. This persistence of
the sign bit may be reasonably considered a bug in the PDP-11 hardware which has infiltrated itself into
the C language. If there were a good way to discover the programs which would be affected, C could
be changed; in any case, lint is no help here.

The above discussion may have made the problem of portability seem bigger than it in fact is.
The issues involved here are rarely subtle or mysterious, at least to the implementor of the program,

†UNIX is a Trademark of Bell Laboratories.

- 8 -

although they can involve some work to straighten out. The most serious bar to the portability of UNIX

system utilities has been the inability to mimic essential UNIX system functions on the other systems.
The inability to seek to a random character position in a text file, or to establish a pipe between
processes, has involved far more rewriting and debugging than any of the differences in C compilers.
On the other hand, lint has been very helpful in moving the UNIX operating system and associated utility
programs to other machines.

Shutting Lint Up

There are occasions when the programmer is smarter than lint . There may be valid reasons for
‘‘illegal’’ type casts, functions with a variable number of arguments, etc. Moreover, as specified above,
the flow of control information produced by lint often has blind spots, causing occasional spurious mes-
sages about perfectly reasonable programs. Thus, some way of communicating with lint , typically to
shut it up, is desirable.

The form which this mechanism should take is not at all clear. New keywords would require
current and old compilers to recognize these keywords, if only to ignore them. This has both philosoph-
ical and practical problems. New preprocessor syntax suffers from similar problems.

What was finally done was to cause a number of words to be recognized by lint when they were
embedded in comments. This required minimal preprocessor changes; the preprocessor just had to agree
to pass comments through to its output, instead of deleting them as had been previously done. Thus,
lint directives are invisible to the compilers, and the effect on systems with the older preprocessors is
merely that the lint directives don’t work.

The first directive is concerned with flow of control information; if a particular place in the pro-
gram cannot be reached, but this is not apparent to lint , this can be asserted by the directive

/* NOTREACHED */

at the appropriate spot in the program. Similarly, if it is desired to turn off strict type checking for the
next expression, the directive

/* NOSTRICT */

can be used; the situation reverts to the previous default after the next expression. The – v flag can be
turned on for one function by the directive

/* ARGSUSED */

Complaints about variable number of arguments in calls to a function can be turned off by the directive

/* VARARGS */

preceding the function definition. In some cases, it is desirable to check the first several arguments, and
leave the later arguments unchecked. This can be done by following the VARARGS keyword immedi-
ately with a digit giving the number of arguments which should be checked; thus,

/* VARARGS2 */

will cause the first two arguments to be checked, the others unchecked. Finally, the directive

/* LINTLIBRARY */

at the head of a file identifies this file as a library declaration file; this topic is worth a section by itself.

Library Declaration Files

Lint accepts certain library directives, such as

– ly

and tests the source files for compatibility with these libraries. This is done by accessing library
description files whose names are constructed from the library directives. These files all begin with the
directive

- 9 -

/* LINTLIBRARY */

which is followed by a series of dummy function definitions. The critical parts of these definitions are
the declaration of the function return type, whether the dummy function returns a value, and the number
and types of arguments to the function. The VARARGS and ARGSUSED directives can be used to
specify features of the library functions.

Lint library files are processed almost exactly like ordinary source files. The only difference is
that functions which are defined on a library file, but are not used on a source file, draw no complaints.
Lint does not simulate a full library search algorithm, and complains if the source files contain a
redefinition of a library routine (this is a feature!).

By default, lint checks the programs it is given against a standard library file, which contains
descriptions of the programs which are normally loaded when a C program is run. When the -p flag is
in effect, another file is checked containing descriptions of the standard I/O library routines which are
expected to be portable across various machines. The -n flag can be used to suppress all library check-
ing.

Bugs, etc.

Lint was a difficult program to write, partially because it is closely connected with matters of pro-
gramming style, and partially because users usually don’t notice bugs which cause lint to miss errors
which it should have caught. (By contrast, if lint incorrectly complains about something that is correct,
the programmer reports that immediately!)

A number of areas remain to be further developed. The checking of structures and arrays is rather
inadequate; size incompatibilities go unchecked, and no attempt is made to match up structure and union
declarations across files. Some stricter checking of the use of the typedef is clearly desirable, but what
checking is appropriate, and how to carry it out, is still to be determined.

Lint shares the preprocessor with the C compiler. At some point it may be appropriate for a spe-
cial version of the preprocessor to be constructed which checks for things such as unused macro
definitions, macro arguments which have side effects which are not expanded at all, or are expanded
more than once, etc.

The central problem with lint is the packaging of the information which it collects. There are
many options which serve only to turn off, or slightly modify, certain features. There are pressures to
add even more of these options.

In conclusion, it appears that the general notion of having two programs is a good one. The com-
piler concentrates on quickly and accurately turning the program text into bits which can be run; lint
concentrates on issues of portability, style, and efficiency. Lint can afford to be wrong, since incorrect-
ness and over-conservatism are merely annoying, not fatal. The compiler can be fast since it knows that
lint will cover its flanks. Finally, the programmer can concentrate at one stage of the programming pro-
cess solely on the algorithms, data structures, and correctness of the program, and then later retrofit, with
the aid of lint , the desirable properties of universality and portability.

- 10 -

References

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Englewood
Cliffs, New Jersey (1978).

2. S. C. Johnson, ‘‘Yacc — Yet Another Compiler-Compiler,’’ Comp. Sci. Tech. Rep. No. 32, Bell
Laboratories, Murray Hill, New Jersey (July 1975).

3. M. E. Lesk, ‘‘Lex — A Lexical Analyzer Generator,’’ Comp. Sci. Tech. Rep. No. 39, Bell
Laboratories, Murray Hill, New Jersey (October 1975).

4. S. C. Johnson and D. M. Ritchie, ‘‘UNIX Time-Sharing System: Portability of C Programs and the
UNIX System,’’ Bell Sys. Tech. J. 57(6), pp.2021-2048 (1978).

5. S. C. Johnson, ‘‘A Portable Compiler: Theory and Practice,’’ Proc. 5th ACM Symp. on Principles
of Programming Languages, pp.97-104 (January 1978).

- 11 -

Appendix: Current Lint Options

The command currently has the form

lint [– options] files... library-descriptors...

The options are

h Perform heuristic checks

p Perform portability checks

v Don’t report unused arguments

u Don’t report unused or undefined externals

b Report unreachable break statements.

x Report unused external declarations

a Report assignments of long to int or shorter.

c Complain about questionable casts

n No library checking is done

s Same as h (for historical reasons)

Make — A Program for Maintaining Computer Programs

S. I. Feldman

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

In a programming project, it is easy to lose track of which files need to be repro-
cessed or recompiled after a change is made in some part of the source. Make pro-
vides a simple mechanism for maintaining up-to-date versions of programs that result
from many operations on a number of files. It is possible to tell Make the sequence of
commands that create certain files, and the list of files that require other files to be
current before the operations can be done. Whenever a change is made in any part of
the program, the Make command will create the proper files simply, correctly, and
with a minimum amount of effort.

The basic operation of Make is to find the name of a needed target in the
description, ensure that all of the files on which it depends exist and are up to date,
and then create the target if it has not been modified since its generators were. The
description file really defines the graph of dependencies; Make does a depth-first
search of this graph to determine what work is really necessary.

Make also provides a simple macro substitution facility and the ability to encap-
sulate commands in a single file for convenient administration.

August 15, 1978

Make — A Program for Maintaining Computer Programs

S. I. Feldman

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

It is common practice to divide large programs into smaller, more manageable pieces. The pieces
may require quite different treatments: some may need to be run through a macro processor, some may
need to be processed by a sophisticated program generator (e.g., Yacc[1] or Lex[2]). The outputs of
these generators may then have to be compiled with special options and with certain definitions and
declarations. The code resulting from these transformations may then need to be loaded together with
certain libraries under the control of special options. Related maintenance activities involve running
complicated test scripts and installing validated modules. Unfortunately, it is very easy for a program-
mer to forget which files depend on which others, which files have been modified recently, and the exact
sequence of operations needed to make or exercise a new version of the program. After a long editing
session, one may easily lose track of which files have been changed and which object modules are still
valid, since a change to a declaration can obsolete a dozen other files. Forgetting to compile a routine
that has been changed or that uses changed declarations will result in a program that will not work, and
a bug that can be very hard to track down. On the other hand, recompiling everything in sight just to be
safe is very wasteful.

The program described in this report mechanizes many of the activities of program development
and maintenance. If the information on inter-file dependences and command sequences is stored in a
file, the simple command

make

is frequently sufficient to update the interesting files, regardless of the number that have been edited
since the last ‘‘make’’. In most cases, the description file is easy to write and changes infrequently. It
is usually easier to type the make command than to issue even one of the needed operations, so the typi-
cal cycle of program development operations becomes

think — edit — make — test . . .

Make is most useful for medium-sized programming projects; it does not solve the problems of
maintaining multiple source versions or of describing huge programs. Make was designed for use on
Unix, but a version runs on GCOS.

Basic Features

The basic operation of make is to update a target file by ensuring that all of the files on which it
depends exist and are up to date, then creating the target if it has not been modified since its dependents
were. Make does a depth-first search of the graph of dependences. The operation of the command
depends on the ability to find the date and time that a file was last modified.

To illustrate, let us consider a simple example: A program named prog is made by compiling and
loading three C-language files x.c, y.c, and z.c with the lS library. By convention, the output of the C
compilations will be found in files named x.o , y.o , and z.o . Assume that the files x.c and y.c share
some declarations in a file named defs , but that z.c does not. That is, x.c and y.c have the line

#include "defs"

The following text describes the relationships and operations:

- 2 -

prog : x.o y.o z.o
cc x.o y.o z.o – lS – o prog

x.o y.o : defs

If this information were stored in a file named makefile, the command

make

would perform the operations needed to recreate prog after any changes had been made to any of the
four source files x.c, y.c, z.c , or defs .

Make operates using three sources of information: a user-supplied description file (as above), file
names and ‘‘last-modified’’ times from the file system, and built-in rules to bridge some of the gaps. In
our example, the first line says that prog depends on three ‘‘.o’’ files. Once these object files are
current, the second line describes how to load them to create prog . The third line says that x.o and y.o
depend on the file defs . From the file system, make discovers that there are three ‘‘.c’’ files correspond-
ing to the needed ‘‘.o’’ files, and uses built-in information on how to generate an object from a source
file (i.e., issue a ‘‘cc – c’’ command).

The following long-winded description file is equivalent to the one above, but takes no advantage
of make’s innate knowledge:

prog : x.o y.o z.o
cc x.o y.o z.o – lS – o prog

x.o : x.c defs
cc – c x.c

y.o : y.c defs
cc – c y.c

z.o : z.c
cc – c z.c

If none of the source or object files had changed since the last time prog was made, all of the files
would be current, and the command

make

would just announce this fact and stop. If, however, the defs file had been edited, x.c and y.c (but not
z.c) would be recompiled, and then prog would be created from the new ‘‘.o’’ files. If only the file y.c
had changed, only it would be recompiled, but it would still be necessary to reload prog .

If no target name is given on the make command line, the first target mentioned in the description
is created; otherwise the specified targets are made. The command

make x.o

would recompile x.o if x.c or defs had changed.

If the file exists after the commands are executed, its time of last modification is used in further
decisions; otherwise the current time is used. It is often quite useful to include rules with mnemonic
names and commands that do not actually produce a file with that name. These entries can take advan-
tage of make’s ability to generate files and substitute macros. Thus, an entry ‘‘save’’ might be included
to copy a certain set of files, or an entry ‘‘cleanup’’ might be used to throw away unneeded intermediate
files. In other cases one may maintain a zero-length file purely to keep track of the time at which cer-
tain actions were performed. This technique is useful for maintaining remote archives and listings.

Make has a simple macro mechanism for substituting in dependency lines and command strings.
Macros are defined by command arguments or description file lines with embedded equal signs. A
macro is invoked by preceding the name by a dollar sign; macro names longer than one character must
be parenthesized. The name of the macro is either the single character after the dollar sign or a name
inside parentheses. The following are valid macro invocations:

- 3 -

$(CFLAGS)
$2
$(xy)
$Z
$(Z)

The last two invocations are identical. $$ is a dollar sign. All of these macros are assigned values dur-
ing input, as shown below. Four special macros change values during the execution of the command:
$∗, $@, $?, and $<. They will be discussed later. The following fragment shows the use:

OBJECTS = x.o y.o z.o
LIBES = – lS
prog: $(OBJECTS)

cc $(OBJECTS) $(LIBES) – o prog
. . .

The command

make

loads the three object files with the lS library. The command

make "LIBES= – ll – lS"

loads them with both the Lex (‘‘– ll’’) and the Standard (‘‘– lS’’) libraries, since macro definitions on the
command line override definitions in the description. (It is necessary to quote arguments with embedded
blanks in UNIX† commands.)

The following sections detail the form of description files and the command line, and discuss
options and built-in rules in more detail.

Description Files and Substitutions

A description file contains three types of information: macro definitions, dependency information,
and executable commands. There is also a comment convention: all characters after a sharp (#) are
ignored, as is the sharp itself. Blank lines and lines beginning with a sharp are totally ignored. If a
non-comment line is too long, it can be continued using a backslash. If the last character of a line is a
backslash, the backslash, newline, and following blanks and tabs are replaced by a single blank.

A macro definition is a line containing an equal sign not preceded by a colon or a tab. The name
(string of letters and digits) to the left of the equal sign (trailing blanks and tabs are stripped) is assigned
the string of characters following the equal sign (leading blanks and tabs are stripped.) The following
are valid macro definitions:

2 = xyz
abc = – ll – ly – lS
LIBES =

The last definition assigns LIBES the null string. A macro that is never explicitly defined has the null
string as value. Macro definitions may also appear on the make command line (see below).

Other lines give information about target files. The general form of an entry is:

target1 [target2 . . .] :[:] [dependent1 . . .] [; commands] [# . . .]
[(tab) commands] [# . . .]
. . .

Items inside brackets may be omitted. Targets and dependents are strings of letters, digits, periods, and
slashes. (Shell metacharacters ‘‘∗’’ and ‘‘?’’ are expanded.) A command is any string of characters not
including a sharp (except in quotes) or newline. Commands may appear either after a semicolon on a

†UNIX is a Trademark of Bell Laboratories.

- 4 -

dependency line or on lines beginning with a tab immediately following a dependency line.

A dependency line may have either a single or a double colon. A target name may appear on
more than one dependency line, but all of those lines must be of the same (single or double colon) type.

1. For the usual single-colon case, at most one of these dependency lines may have a command
sequence associated with it. If the target is out of date with any of the dependents on any of the
lines, and a command sequence is specified (even a null one following a semicolon or tab), it is
executed; otherwise a default creation rule may be invoked.

2. In the double-colon case, a command sequence may be associated with each dependency line; if
the target is out of date with any of the files on a particular line, the associated commands are
executed. A built-in rule may also be executed. This detailed form is of particular value in updat-
ing archive-type files.

If a target must be created, the sequence of commands is executed. Normally, each command line
is printed and then passed to a separate invocation of the Shell after substituting for macros. (The print-
ing is suppressed in silent mode or if the command line begins with an @ sign). Make normally stops
if any command signals an error by returning a non-zero error code. (Errors are ignored if the ‘‘– i’’
flags has been specified on the make command line, if the fake target name ‘‘.IGNORE’’ appears in the
description file, or if the command string in the description file begins with a hyphen. Some UNIX com-
mands return meaningless status). Because each command line is passed to a separate invocation of the
Shell, care must be taken with certain commands (e.g., cd and Shell control commands) that have mean-
ing only within a single Shell process; the results are forgotten before the next line is executed.

Before issuing any command, certain macros are set. $@ is set to the name of the file to be
‘‘made’’. $? is set to the string of names that were found to be younger than the target. If the com-
mand was generated by an implicit rule (see below), $< is the name of the related file that caused the
action, and $∗ is the prefix shared by the current and the dependent file names.

If a file must be made but there are no explicit commands or relevant built-in rules, the commands
associated with the name ‘‘.DEFAULT’’ are used. If there is no such name, make prints a message and
stops.

Command Usage

The make command takes four kinds of arguments: macro definitions, flags, description file
names, and target file names.

make [flags] [macro definitions] [targets]

The following summary of the operation of the command explains how these arguments are interpreted.

First, all macro definition arguments (arguments with embedded equal signs) are analyzed and the
assignments made. Command-line macros override corresponding definitions found in the description
files.

Next, the flag arguments are examined. The permissible flags are

– i Ignore error codes returned by invoked commands. This mode is entered if the fake target name
‘‘.IGNORE’’ appears in the description file.

– s Silent mode. Do not print command lines before executing. This mode is also entered if the fake
target name ‘‘.SILENT’’ appears in the description file.

– r Do not use the built-in rules.

– n No execute mode. Print commands, but do not execute them. Even lines beginning with an ‘‘@’’
sign are printed.

– t Touch the target files (causing them to be up to date) rather than issue the usual commands.

– q Question. The make command returns a zero or non-zero status code depending on whether the
target file is or is not up to date.

- 5 -

– p Print out the complete set of macro definitions and target descriptions

– d Debug mode. Print out detailed information on files and times examined.

– f Description file name. The next argument is assumed to be the name of a description file. A file
name of ‘‘– ’’ denotes the standard input. If there are no ‘‘– f ’’ arguments, the file named
makefile or Makefile in the current directory is read. The contents of the description files override
the built-in rules if they are present).

Finally, the remaining arguments are assumed to be the names of targets to be made; they are
done in left to right order. If there are no such arguments, the first name in the description files that
does not begin with a period is ‘‘made’’.

Implicit Rules

The make program uses a table of interesting suffixes and a set of transformation rules to supply
default dependency information and implied commands. (The Appendix describes these tables and
means of overriding them.) The default suffix list is:

.o Object file

.c C source file

.e Efl source file

.r Ratfor source file

.f Fortran source file

.s Assembler source file

.y Yacc-C source grammar

.yr Yacc-Ratfor source grammar

.ye Yacc-Efl source grammar

.l Lex source grammar

The following diagram summarizes the default transformation paths. If there are two paths connecting a
pair of suffixes, the longer one is used only if the intermediate file exists or is named in the description.

.o

.c .r .e .f .s .y .yr .ye .l .d

.y .l .yr .ye

If the file x.o were needed and there were an x.c in the description or directory, it would be com-
piled. If there were also an x.l , that grammar would be run through Lex before compiling the result.
However, if there were no x.c but there were an x.l , make would discard the intermediate C-language
file and use the direct link in the graph above.

It is possible to change the names of some of the compilers used in the default, or the flag argu-
ments with which they are invoked by knowing the macro names used. The compiler names are the
macros AS, CC, RC, EC, YACC, YACCR, YACCE, and LEX. The command

make CC=newcc

will cause the ‘‘newcc’’ command to be used instead of the usual C compiler. The macros CFLAGS,
RFLAGS, EFLAGS, YFLAGS, and LFLAGS may be set to cause these commands to be issued with
optional flags. Thus,

- 6 -

make "CFLAGS= −O"

causes the optimizing C compiler to be used.

Example

As an example of the use of make, we will present the description file used to maintain the make
command itself. The code for make is spread over a number of C source files and a Yacc grammar.
The description file contains:

Description file for the Make command

P = und – 3  opr – r2 # send to GCOS to be printed
FILES = Makefile version.c defs main.c doname.c misc.c files.c dosys.cgram.y lex.c gcos.c
OBJECTS = version.o main.o doname.o misc.o files.o dosys.o gram.o
LIBES= – lS
LINT = lint – p
CFLAGS = – O

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) – o make
size make

$(OBJECTS): defs
gram.o: lex.c

cleanup:
-rm *.o gram.c
-du

install:
@size make /usr/bin/make
cp make /usr/bin/make ; rm make

print: $(FILES) # print recently changed files
pr $?  $P
touch print

test:
make – dp  grep – v TIME >1zap
/usr/bin/make – dp  grep – v TIME >2zap
diff 1zap 2zap
rm 1zap 2zap

lint : dosys.c doname.c files.c main.c misc.c version.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c version.c gram.c
rm gram.c

arch:
ar uv /sys/source/s2/make.a $(FILES)

Make usually prints out each command before issuing it. The following output results from typing the
simple command

make

in a directory containing only the source and description file:

- 7 -

cc – c version.c
cc – c main.c
cc – c doname.c
cc – c misc.c
cc – c files.c
cc – c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc – c gram.c
cc version.o main.o doname.o misc.o files.o dosys.o gram.o – lS – o make
13188+3348+3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned by name in the description file, make
found them using its suffix rules and issued the needed commands. The string of digits results from the
‘‘size make’’ command; the printing of the command line itself was suppressed by an @ sign. The @
sign on the size command in the description file suppressed the printing of the command, so only the
sizes are written.

The last few entries in the description file are useful maintenance sequences. The ‘‘print’’ entry
prints only the files that have been changed since the last ‘‘make print’’ command. A zero-length file
print is maintained to keep track of the time of the printing; the $? macro in the command line then
picks up only the names of the files changed since print was touched. The printed output can be sent to
a different printer or to a file by changing the definition of the P macro:

make print "P = opr – sp"
or

make print "P= cat >zap"

Suggestions and Warnings

The most common difficulties arise from make’s specific meaning of dependency. If file x.c has a
‘‘#include "defs"’’ line, then the object file x.o depends on defs; the source file x.c does not. (If defs is
changed, it is not necessary to do anything to the file x.c, while it is necessary to recreate x.o .)

To discover what make would do, the ‘‘– n’’ option is very useful. The command

make – n

orders make to print out the commands it would issue without actually taking the time to execute them.
If a change to a file is absolutely certain to be benign (e.g., adding a new definition to an include file),
the ‘‘– t’’ (touch) option can save a lot of time: instead of issuing a large number of superfluous recom-
pilations, make updates the modification times on the affected file. Thus, the command

make – ts

(‘‘touch silently’’) causes the relevant files to appear up to date. Obvious care is necessary, since this
mode of operation subverts the intention of make and destroys all memory of the previous relationships.

The debugging flag (‘‘– d’’) causes make to print out a very detailed description of what it is
doing, including the file times. The output is verbose, and recommended only as a last resort.

Acknowledgments

I would like to thank S. C. Johnson for suggesting this approach to program maintenance control.
I would like to thank S. C. Johnson and H. Gajewska for being the prime guinea pigs during develop-
ment of make.

- 8 -

References

1. S. C. Johnson, ‘‘Yacc — Yet Another Compiler-Compiler’’, Bell Laboratories Computing Science
Technical Report #32, July 1978.

2. M. E. Lesk, ‘‘Lex — A Lexical Analyzer Generator’’, Computing Science Technical Report #39,
October 1975.

- 9 -

Appendix. Suffixes and Transformation Rules

The make program itself does not know what file name suffixes are interesting or how to
transform a file with one suffix into a file with another suffix. This information is stored in an internal
table that has the form of a description file. If the ‘‘– r’’ flag is used, this table is not used.

The list of suffixes is actually the dependency list for the name ‘‘.SUFFIXES’’; make looks for a
file with any of the suffixes on the list. If such a file exists, and if there is a transformation rule for that
combination, make acts as described earlier. The transformation rule names are the concatenation of the
two suffixes. The name of the rule to transform a ‘‘.r’’ file to a ‘‘.o’’ file is thus ‘‘.r.o’’. If the rule is
present and no explicit command sequence has been given in the user’s description files, the command
sequence for the rule ‘‘.r.o’’ is used. If a command is generated by using one of these suffixing rules,
the macro $∗ is given the value of the stem (everything but the suffix) of the name of the file to be
made, and the macro $< is the name of the dependent that caused the action.

The order of the suffix list is significant, since it is scanned from left to right, and the first name
that is formed that has both a file and a rule associated with it is used. If new names are to be
appended, the user can just add an entry for ‘‘.SUFFIXES’’ in his own description file; the dependents
will be added to the usual list. A ‘‘.SUFFIXES’’ line without any dependents deletes the current list.
(It is necessary to clear the current list if the order of names is to be changed).

The following is an excerpt from the default rules file:

.SUFFIXES : .o .c .e .r .f .y .yr .ye .l .s
YACC=yacc
YACCR=yacc – r
YACCE=yacc – e
YFLAGS=
LEX=lex
LFLAGS=
CC=cc
AS=as –
CFLAGS=
RC=ec
RFLAGS=
EC=ec
EFLAGS=
FFLAGS=
.c.o :

$(CC) $(CFLAGS) – c $<
.e.o .r.o .f.o :

$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) – c $<
.s.o :

$(AS) – o $@ $<
.y.o :

$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) – c y.tab.c
rm y.tab.c
mv y.tab.o $@

.y.c :
$(YACC) $(YFLAGS) $<
mv y.tab.c $@

UNIX Programming — Second Edition

Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is an introduction to programming on the UNIX† system. The emphasis
is on how to write programs that interface to the operating system, either directly or
through the standard I/O library. The topics discussed include

• handling command arguments

• rudimentary I/O; the standard input and output

• the standard I/O library; file system access

• low-level I/O: open, read, write, close, seek

• processes: exec, fork, pipes

• signals — interrupts, etc.

There is also an appendix which describes the standard I/O library in detail.

December 3, 1998

_ ______________
†UNIX is a Trademark of Bell Laboratories.

UNIX Programming — Second Edition

Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

1 . I IN NT TR RO OD DU UC CT TI IO ON N

This paper describes how to write programs that interface with the UNIX operating system in a
non-trivial way. This includes programs that use files by name, that use pipes, that invoke other com-
mands as they run, or that attempt to catch interrupts and other signals during execution.

The document collects material which is scattered throughout several sections of The UNIX
Programmer’s Manual [1] for Version 7 UNIX. There is no attempt to be complete; only generally use-
ful material is dealt with. It is assumed that you will be programming in C, so you must be able to read
the language roughly up to the level of The C Programming Language [2]. Some of the material in sec-
tions 2 through 4 is based on topics covered more carefully there. You should also be familiar with
UNIX itself at least to the level of UNIX for Beginners [3].

2 . B BA AS SI IC CS S

2 . 1 . P Pr ro og gr ra am m A Ar rg gu um me en nt ts s

When a C program is run as a command, the arguments on the command line are made available to
the function m a i n as an argument count a r g c and an array a r g v of pointers to character strings
that contain the arguments. By convention, a r g v [0] is the command name itself, so a r g c is
always greater than 0.

The following program illustrates the mechanism: it simply echoes its arguments back to the termi-
nal. (This is essentially the e c h o command.)

mai n(a rgc , arg v) /* ech o arg ume nts */

int arg c;
cha r *arg v[] ;
{

int i;

for (i = 1; i < arg c; i++)
pri ntf ("% s%c ", arg v[i], (i< arg c-1) ? ’ ’ : ’\n’) ;

}

ar gv is a pointer to an array whose individual elements are pointers to arrays of characters; each is ter-
minated by \0, so they can be treated as strings. The program starts by printing ar gv [1] and loops
until it has printed them all.

The argument count and the arguments are parameters to ma in. If you want to keep them around
so other routines can get at them, you must copy them to external variables.

2. 2. T Th he e ‘ ‘‘ ‘S St ta an nd da ar rd d I In np pu ut t’ ’’ ’ a an nd d ‘ ‘‘ ‘S St ta an nd da ar rd d O Ou ut tp pu ut t’ ’’ ’

The simplest input mechanism is to read the ‘‘standard input,’’ which is generally the user’s termi-
nal. The function ge tc ha r returns the next input character each time it is called. A file may be sub-
stituted for the terminal by using the < convention: if pr og uses ge tc ha r, then the command line

- 2 -

pro g <fi le

causes pr og to read fi le instead of the terminal. pr og itself need know nothing about where its
input is coming from. This is also true if the input comes from another program via the pipe mechan-
ism:

oth erp rog | pro g

provides the standard input for pr og from the standard output of ot he rp ro g.

ge tc ha r returns the value EO F when it encounters the end of file (or an error) on whatever you
are reading. The value of EO F is normally defined to be -1, but it is unwise to take any advantage of
that knowledge. As will become clear shortly, this value is automatically defined for you when you
compile a program, and need not be of any concern.

Similarly, pu tc ha r(c) puts the character c on the ‘‘standard output,’’ which is also by default
the terminal. The output can be captured on a file by using >: if pr og uses pu tc ha r,

pro g >ou tfi le

writes the standard output on ou tf il e instead of the terminal. ou tf il e is created if it doesn’t exist;
if it already exists, its previous contents are overwritten. And a pipe can be used:

pro g | oth erp rog

puts the standard output of pr og into the standard input of ot he rp ro g.

The function pr in tf, which formats output in various ways, uses the same mechanism as
pu tc ha r does, so calls to pr in tf and pu tc ha r may be intermixed in any order; the output will
appear in the order of the calls.

Similarly, the function sc an f provides for formatted input conversion; it will read the standard
input and break it up into strings, numbers, etc., as desired. sc an f uses the same mechanism as
ge tc ha r, so calls to them may also be intermixed.

Many programs read only one input and write one output; for such programs I/O with ge tc ha r,
pu tc ha r, sc an f, and pr in tf may be entirely adequate, and it is almost always enough to get
started. This is particularly true if the UNIX pipe facility is used to connect the output of one program
to the input of the next. For example, the following program strips out all ascii control characters from
its input (except for newline and tab).

#in clu de <st dio .h>

mai n() /* ccs tri p: str ip non -gr aph ic cha rac ter s */

{
int c;
whi le ((c = get cha r()) != EOF)

if ((c >= ’ ’ && c < 017 7) | | c == ’\t’ | | c == ’\n’)
put cha r(c);

exi t(0);
}

The line

#in clu de <st dio .h>

should appear at the beginning of each source file. It causes the C compiler to read a file
(/usr/include/stdio.h) of standard routines and symbols that includes the definition of EO F.

If it is necessary to treat multiple files, you can use ca t to collect the files for you:

cat fil e1 fil e2 ... | ccs tri p >ou tpu t

and thus avoid learning how to access files from a program. By the way, the call to ex it at the end is
not necessary to make the program work properly, but it assures that any caller of the program will see
a normal termination status (conventionally 0) from the program when it completes. Section 6 discusses

- 3 -

status returns in more detail.

3. T TH HE E S ST TA AN ND DA AR RD D I I/ /O O L LI IB BR RA AR RY Y

The ‘‘Standard I/O Library’’ is a collection of routines intended to provide efficient and portable I/O
services for most C programs. The standard I/O library is available on each system that supports C, so
programs that confine their system interactions to its facilities can be transported from one system to
another essentially without change.

In this section, we will discuss the basics of the standard I/O library. The appendix contains a more
complete description of its capabilities.

3. 1. F Fi il le e A Ac cc ce es ss s

The programs written so far have all read the standard input and written the standard output, which
we have assumed are magically pre-defined. The next step is to write a program that accesses a file that
is not already connected to the program. One simple example is wc , which counts the lines, words and
characters in a set of files. For instance, the command

wc x.c y.c

prints the number of lines, words and characters in x. c and y. c and the totals.

The question is how to arrange for the named files to be read — that is, how to connect the file sys-
tem names to the I/O statements which actually read the data.

The rules are simple. Before it can be read or written a file has to be opened by the standard
library function fo pe n. fo pe n takes an external name (like x. c or y. c), does some housekeeping
and negotiation with the operating system, and returns an internal name which must be used in subse-
quent reads or writes of the file.

This internal name is actually a pointer, called a file pointer , to a structure which contains informa-
tion about the file, such as the location of a buffer, the current character position in the buffer, whether
the file is being read or written, and the like. Users don’t need to know the details, because part of the
standard I/O definitions obtained by including st di o. h is a structure definition called FI LE. The
only declaration needed for a file pointer is exemplified by

FIL E *fp, *fop en();

This says that fp is a pointer to a FI LE, and fo pe n returns a pointer to a FI LE. (FI LE is a type
name, like in t, not a structure tag.

The actual call to fo pe n in a program is

fp = fop en(nam e, mod e);

The first argument of fo pe n is the name of the file, as a character string. The second argument is the
mode, also as a character string, which indicates how you intend to use the file. The only allowable
modes are read ("r "), write ("w "), or append ("a ").

If a file that you open for writing or appending does not exist, it is created (if possible). Opening
an existing file for writing causes the old contents to be discarded. Trying to read a file that does not
exist is an error, and there may be other causes of error as well (like trying to read a file when you don’t
have permission). If there is any error, fo pe n will return the null pointer value NU LL (which is
defined as zero in st di o. h).

The next thing needed is a way to read or write the file once it is open. There are several possibili-
ties, of which ge tc and pu tc are the simplest. ge tc returns the next character from a file; it needs
the file pointer to tell it what file. Thus

c = get c(f p)

places in c the next character from the file referred to by fp; it returns EO F when it reaches end of file.
pu tc is the inverse of ge tc:

- 4 -

put c(c , fp)

puts the character c on the file fp and returns c. ge tc and pu tc return EO F on error.

When a program is started, three files are opened automatically, and file pointers are provided for
them. These files are the standard input, the standard output, and the standard error output; the
corresponding file pointers are called st di n, st do ut, and st de rr. Normally these are all con-
nected to the terminal, but may be redirected to files or pipes as described in Section 2.2. st di n,
st do ut and st de rr are pre-defined in the I/O library as the standard input, output and error files;
they may be used anywhere an object of type FI LE * can be. They are constants, however, not vari-
ables, so don’t try to assign to them.

With some of the preliminaries out of the way, we can now write wc . The basic design is one that
has been found convenient for many programs: if there are command-line arguments, they are processed
in order. If there are no arguments, the standard input is processed. This way the program can be used
stand-alone or as part of a larger process.

#in clu de <st dio .h>

mai n(a rgc , arg v) /* wc: cou nt lin es, wor ds, cha rs */

int arg c;
cha r *arg v[] ;
{

int c, i, inw ord ;
FIL E *fp, *fop en();
lon g lin ect , wor dct , cha rct ;
lon g tli nec t = 0, two rdc t = 0, tch arc t = 0;

i = 1;
fp = std in;
do {

if (ar gc > 1 && (fp =fo pen (ar gv[i], "r")) == NUL L) {
fpr int f(s tde rr, "wc : can ’t ope n %s\n", arg v[i]);
con tin ue;

}
lin ect = wor dct = cha rct = inw ord = 0;
whi le ((c = get c(f p)) != EOF) {

cha rct ++;
if (c == ’\n’)

lin ect ++;
if (c == ’ ’ | | c == ’\t’ | | c == ’\n’)

inw ord = 0;
els e if (in wor d == 0) {

inw ord = 1;
wor dct ++;

}
}
pri ntf ("% 7ld %7l d %7l d", lin ect , wor dct , cha rct);
pri ntf (ar gc > 1 ? " %s\n" : "\n", arg v[i]);
fcl ose (fp);
tli nec t += lin ect ;
two rdc t += wor dct ;
tch arc t += cha rct ;

} whi le (++ i < arg c);
if (ar gc > 2)

pri ntf ("% 7ld %7l d %7l d tot al\n", tli nec t, two rdc t, tch arc t);
exi t(0);

}

The function fp ri nt f is identical to pr in tf, save that the first argument is a file pointer that

- 5 -

specifies the file to be written.

The function fc lo se is the inverse of fo pe n; it breaks the connection between the file pointer
and the external name that was established by fo pe n, freeing the file pointer for another file. Since
there is a limit on the number of files that a program may have open simultaneously, it’s a good idea to
free things when they are no longer needed. There is also another reason to call fc lo se on an output
file — it flushes the buffer in which pu tc is collecting output. (fc lo se is called automatically for
each open file when a program terminates normally.)

3. 2. E Er rr ro or r H Ha an nd dl li in ng g — — S St td de er rr r a an nd d E Ex xi it t

st de rr is assigned to a program in the same way that st di n and st do ut are. Output written
on st de rr appears on the user’s terminal even if the standard output is redirected. wc writes its diag-
nostics on st de rr instead of st do ut so that if one of the files can’t be accessed for some reason, the
message finds its way to the user’s terminal instead of disappearing down a pipeline or into an output
file.

The program actually signals errors in another way, using the function ex it to terminate program
execution. The argument of ex it is available to whatever process called it (see Section 6), so the suc-
cess or failure of the program can be tested by another program that uses this one as a sub-process. By
convention, a return value of 0 signals that all is well; non-zero values signal abnormal situations.

ex it itself calls fc lo se for each open output file, to flush out any buffered output, then calls a
routine named —e xi t. The function —e xi t causes immediate termination without any buffer flushing;
it may be called directly if desired.

3. 3. M Mi is sc ce el ll la an ne eo ou us s I I/ /O O F Fu un nc ct ti io on ns s

The standard I/O library provides several other I/O functions besides those we have illustrated
above.

Normally output with pu tc, etc., is buffered (except to st de rr); to force it out immediately, use
ff lu sh (f p).

fs ca nf is identical to sc an f, except that its first argument is a file pointer (as with fp ri nt f)
that specifies the file from which the input comes; it returns EO F at end of file.

The functions ss ca nf and sp ri nt f are identical to fs ca nf and fp ri nt f, except that the
first argument names a character string instead of a file pointer. The conversion is done from the string
for ss ca nf and into it for sp ri nt f.

fg et s(bu f, si ze , fp) copies the next line from fp, up to and including a newline, into
bu f; at most si ze -1 characters are copied; it returns NU LL at end of file. fp ut s(bu f, fp)
writes the string in bu f onto file fp.

The function un ge tc (c , fp) ‘‘pushes back’’ the character c onto the input stream fp; a subse-
quent call to ge tc, fs ca nf, etc., will encounter c. Only one character of pushback per file is permit-
ted.

4. L LO OW W- -L LE EV VE EL L I I/ /O O

This section describes the bottom level of I/O on the UNIX system. The lowest level of I/O in
UNIX provides no buffering or any other services; it is in fact a direct entry into the operating system.
You are entirely on your own, but on the other hand, you have the most control over what happens.
And since the calls and usage are quite simple, this isn’t as bad as it sounds.

4. 1. F Fi il le e D De es sc cr ri ip pt to or rs s

In the UNIX operating system, all input and output is done by reading or writing files, because all
peripheral devices, even the user’s terminal, are files in the file system. This means that a single, homo-
geneous interface handles all communication between a program and peripheral devices.

In the most general case, before reading or writing a file, it is necessary to inform the system of
your intent to do so, a process called ‘‘opening’’ the file. If you are going to write on a file, it may also

- 6 -

be necessary to create it. The system checks your right to do so (Does the file exist? Do you have per-
mission to access it?), and if all is well, returns a small positive integer called a file descriptor. When-
ever I/O is to be done on the file, the file descriptor is used instead of the name to identify the file.
(This is roughly analogous to the use of READ(5,...) and WRITE(6,...) in Fortran.) All information about
an open file is maintained by the system; the user program refers to the file only by the file descriptor.

The file pointers discussed in section 3 are similar in spirit to file descriptors, but file descriptors are
more fundamental. A file pointer is a pointer to a structure that contains, among other things, the file
descriptor for the file in question.

Since input and output involving the user’s terminal are so common, special arrangements exist to
make this convenient. When the command interpreter (the ‘‘shell’’) runs a program, it opens three files,
with file descriptors 0, 1, and 2, called the standard input, the standard output, and the standard error
output. All of these are normally connected to the terminal, so if a program reads file descriptor 0 and
writes file descriptors 1 and 2, it can do terminal I/O without worrying about opening the files.

If I/O is redirected to and from files with < and >, as in

pro g <in fil e >ou tfi le

the shell changes the default assignments for file descriptors 0 and 1 from the terminal to the named
files. Similar observations hold if the input or output is associated with a pipe. Normally file descriptor
2 remains attached to the terminal, so error messages can go there. In all cases, the file assignments are
changed by the shell, not by the program. The program does not need to know where its input comes
from nor where its output goes, so long as it uses file 0 for input and 1 and 2 for output.

4. 2. R Re ea ad d a an nd d W Wr ri it te e

All input and output is done by two functions called re ad and wr it e. For both, the first argu-
ment is a file descriptor. The second argument is a buffer in your program where the data is to come
from or go to. The third argument is the number of bytes to be transferred. The calls are

n—r ead = rea d(f d, buf , n);

n—w rit ten = wri te(fd, buf , n);

Each call returns a byte count which is the number of bytes actually transferred. On reading, the
number of bytes returned may be less than the number asked for, because fewer than n bytes remained
to be read. (When the file is a terminal, re ad normally reads only up to the next newline, which is
generally less than what was requested.) A return value of zero bytes implies end of file, and -1 indi-
cates an error of some sort. For writing, the returned value is the number of bytes actually written; it is
generally an error if this isn’t equal to the number supposed to be written.

The number of bytes to be read or written is quite arbitrary. The two most common values are 1,
which means one character at a time (‘‘unbuffered’’), and 512, which corresponds to a physical block-
size on many peripheral devices. This latter size will be most efficient, but even character at a time I/O
is not inordinately expensive.

Putting these facts together, we can write a simple program to copy its input to its output. This
program will copy anything to anything, since the input and output can be redirected to any file or dev-
ice.

- 7 -

#de fin e BUF SIZ E 512 /* bes t siz e for PDP -11 UNI X */

mai n() /* cop y inp ut to out put */

{
cha r buf [BU FSI ZE] ;
int n;

whi le ((n = rea d(0 , buf , BUF SIZ E)) > 0)
wri te(1, buf , n);

exi t(0);
}

If the file size is not a multiple of BU FS IZ E, some re ad will return a smaller number of bytes to be
written by wr it e; the next call to re ad after that will return zero.

It is instructive to see how re ad and wr it e can be used to construct higher level routines like
ge tc ha r, pu tc ha r, etc. For example, here is a version of ge tc ha r which does unbuffered input.

#de fin e CMA SK 037 7 /* for mak ing cha r’s > 0 */

get cha r() /* unb uff ere d sin gle cha rac ter inp ut */

{
cha r c;

ret urn ((r ead (0, &c, 1) > 0) ? c & CMA SK : EOF);
}

c must be declared ch ar, because re ad accepts a character pointer. The character being returned
must be masked with 03 77 to ensure that it is positive; otherwise sign extension may make it negative.
(The constant 03 77 is appropriate for the PDP-11 but not necessarily for other machines.)

The second version of ge tc ha r does input in big chunks, and hands out the characters one at a
time.

#de fin e CMA SK 037 7 /* for mak ing cha r’s > 0 */

#de fin e BUF SIZ E 512

get cha r() /* buf fer ed ver sio n */

{
sta tic cha r buf [BU FSI ZE] ;
sta tic cha r *buf p = buf ;
sta tic int n = 0;

if (n == 0) { /* buf fer is emp ty */

n = rea d(0 , buf , BUF SIZ E);
buf p = buf ;

}
ret urn ((- -n >= 0) ? *buf p++ & CMA SK : EOF);

}

4. 3. O Op pe en n, , C Cr re ea at t, , C Cl lo os se e, , U Un nl li in nk k

Other than the default standard input, output and error files, you must explicitly open files in order
to read or write them. There are two system entry points for this, op en and cr ea t [sic].

op en is rather like the fo pe n discussed in the previous section, except that instead of returning a
file pointer, it returns a file descriptor, which is just an in t.

int fd;

fd = ope n(n ame , rwm ode);

- 8 -

As with fo pe n, the na me argument is a character string corresponding to the external file name. The
access mode argument is different, however: rw mo de is 0 for read, 1 for write, and 2 for read and
write access. op en returns -1 if any error occurs; otherwise it returns a valid file descriptor.

It is an error to try to op en a file that does not exist. The entry point cr ea t is provided to create
new files, or to re-write old ones.

fd = cre at(nam e, pmo de) ;

returns a file descriptor if it was able to create the file called na me, and -1 if not. If the file already
exists, cr ea t will truncate it to zero length; it is not an error to cr ea t a file that already exists.

If the file is brand new, cr ea t creates it with the protection mode specified by the pm od e argu-
ment. In the UNIX file system, there are nine bits of protection information associated with a file, con-
trolling read, write and execute permission for the owner of the file, for the owner’s group, and for all
others. Thus a three-digit octal number is most convenient for specifying the permissions. For example,
0755 specifies read, write and execute permission for the owner, and read and execute permission for the
group and everyone else.

To illustrate, here is a simplified version of the UNIX utility cp , a program which copies one file to
another. (The main simplification is that our version copies only one file, and does not permit the
second argument to be a directory.)

#de fin e NUL L 0
#de fin e BUF SIZ E 512
#de fin e PMO DE 064 4 /* RW for own er, R for gro up, oth ers */

mai n(a rgc , arg v) /* cp: cop y f1 to f2 */

int arg c;
cha r *arg v[] ;
{

int f1, f2, n;
cha r buf [BU FSI ZE] ;

if (ar gc != 3)
err or("Us age : cp fro m to" , NUL L);

if ((f 1 = ope n(a rgv [1] , 0)) == -1)
err or("cp : can ’t ope n %s" , arg v[1]);

if ((f 2 = cre at(arg v[2], PMO DE)) == -1)
err or("cp : can ’t cre ate %s" , arg v[2]);

whi le ((n = rea d(f 1, buf , BUF SIZ E)) > 0)
if (wr ite (f2 , buf , n) != n)

err or("cp : wri te err or" , NUL L);
exi t(0);

}

err or(s1, s2) /* pri nt err or mes sag e and die */

cha r *s1, *s2;
{

pri ntf (s1 , s2) ;
pri ntf ("\n") ;
exi t(1);

}

As we said earlier, there is a limit (typically 15-25) on the number of files which a program may
have open simultaneously. Accordingly, any program which intends to process many files must be
prepared to re-use file descriptors. The routine cl os e breaks the connection between a file descriptor
and an open file, and frees the file descriptor for use with some other file. Termination of a program via
ex it or return from the main program closes all open files.

- 9 -

The function un li nk (f il en am e) removes the file fi le na me from the file system.

4. 4. R Ra an nd do om m A Ac cc ce es ss s — — S Se ee ek k a an nd d L Ls se ee ek k

File I/O is normally sequential: each re ad or wr it e takes place at a position in the file right
after the previous one. When necessary, however, a file can be read or written in any arbitrary order.
The system call ls ee k provides a way to move around in a file without actually reading or writing:

lse ek(fd, off set , ori gin);

forces the current position in the file whose descriptor is fd to move to position of fs et, which is
taken relative to the location specified by or ig in. Subsequent reading or writing will begin at that
position. of fs et is a lo ng; fd and or ig in are in t’s. or ig in can be 0, 1, or 2 to specify that
of fs et is to be measured from the beginning, from the current position, or from the end of the file
respectively. For example, to append to a file, seek to the end before writing:

lse ek(fd, 0L, 2);

To get back to the beginning (‘‘rewind’’),

lse ek(fd, 0L, 0);

Notice the 0L argument; it could also be written as (l on g) 0.

With ls ee k, it is possible to treat files more or less like large arrays, at the price of slower access.
For example, the following simple function reads any number of bytes from any arbitrary place in a file.

get (fd , pos , buf , n) /* rea d n byt es fro m pos iti on pos */

int fd, n;
lon g pos ;
cha r *buf ;
{

lse ek(fd, pos , 0); /* get to pos */

ret urn (re ad(fd, buf , n)) ;
}

In pre-version 7 UNIX, the basic entry point to the I/O system is called se ek. se ek is identical to
ls ee k, except that its of fs et argument is an in t rather than a lo ng. Accordingly, since PDP-11
integers have only 16 bits, the of fs et specified for se ek is limited to 65,535; for this reason,
or ig in values of 3, 4, 5 cause se ek to multiply the given offset by 512 (the number of bytes in one
physical block) and then interpret or ig in as if it were 0, 1, or 2 respectively. Thus to get to an arbi-
trary place in a large file requires two seeks, first one which selects the block, then one which has
or ig in equal to 1 and moves to the desired byte within the block.

4. 5. E Er rr ro or r P Pr ro oc ce es ss si in ng g

The routines discussed in this section, and in fact all the routines which are direct entries into the
system can incur errors. Usually they indicate an error by returning a value of – 1. Sometimes it is nice
to know what sort of error occurred; for this purpose all these routines, when appropriate, leave an error
number in the external cell er rn o. The meanings of the various error numbers are listed in the intro-
duction to Section II of the UNIX Programmer’s Manual, so your program can, for example, determine
if an attempt to open a file failed because it did not exist or because the user lacked permission to read
it. Perhaps more commonly, you may want to print out the reason for failure. The routine pe rr or
will print a message associated with the value of er rn o; more generally, sy s— er rn o is an array of
character strings which can be indexed by er rn o and printed by your program.

5. P PR RO OC CE ES SS SE ES S

It is often easier to use a program written by someone else than to invent one’s own. This section
describes how to execute a program from within another.

- 10 -

5. 1. T Th he e ‘ ‘‘ ‘S Sy ys st te em m’ ’’ ’ F Fu un nc ct ti io on n

The easiest way to execute a program from another is to use the standard library routine sy st em.
sy st em takes one argument, a command string exactly as typed at the terminal (except for the newline
at the end) and executes it. For instance, to time-stamp the output of a program,

mai n()
{

sys tem ("d ate ");
/* res t of pro ces sin g */

}

If the command string has to be built from pieces, the in-memory formatting capabilities of sp ri nt f
may be useful.

Remember than ge tc and pu tc normally buffer their input; terminal I/O will not be properly syn-
chronized unless this buffering is defeated. For output, use ff lu sh; for input, see se tb uf in the
appendix.

5. 2. L Lo ow w- -L Le ev ve el l P Pr ro oc ce es ss s C Cr re ea at ti io on n — — E Ex xe ec cl l a an nd d E Ex xe ec cv v

If you’re not using the standard library, or if you need finer control over what happens, you will
have to construct calls to other programs using the more primitive routines that the standard library’s
sy st em routine is based on.

The most basic operation is to execute another program without returning , by using the routine
ex ec l. To print the date as the last action of a running program, use

exe cl("/bin/dat e", "da te" , NUL L);

The first argument to ex ec l is the file name of the command; you have to know where it is found in
the file system. The second argument is conventionally the program name (that is, the last component
of the file name), but this is seldom used except as a place-holder. If the command takes arguments,
they are strung out after this; the end of the list is marked by a NU LL argument.

The ex ec l call overlays the existing program with the new one, runs that, then exits. There is no
return to the original program.

More realistically, a program might fall into two or more phases that communicate only through
temporary files. Here it is natural to make the second pass simply an ex ec l call from the first.

The one exception to the rule that the original program never gets control back occurs when there is
an error, for example if the file can’t be found or is not executable. If you don’t know where da te is
located, say

exe cl("/bin/dat e", "da te" , NUL L);
exe cl("/usr/bin/dat e", "da te" , NUL L);
fpr int f(s tde rr, "So meo ne sto le ’da te’\n") ;

A variant of ex ec l called ex ec v is useful when you don’t know in advance how many argu-
ments there are going to be. The call is

exe cv(fil ena me, arg p);

where ar gp is an array of pointers to the arguments; the last pointer in the array must be NU LL so
ex ec v can tell where the list ends. As with ex ec l, fi le na me is the file in which the program is
found, and ar gp [0] is the name of the program. (This arrangement is identical to the ar gv array for
program arguments.)

Neither of these routines provides the niceties of normal command execution. There is no
automatic search of multiple directories — you have to know precisely where the command is located.
Nor do you get the expansion of metacharacters like <, >, *, ?, and [] in the argument list. If you
want these, use ex ec l to invoke the shell sh, which then does all the work. Construct a string
co mm an dl in e that contains the complete command as it would have been typed at the terminal, then
say

- 11 -

exe cl("/bin/sh" , "sh ", "-c ", com man dli ne, NUL L);

The shell is assumed to be at a fixed place, /bi n/sh. Its argument -c says to treat the next argument
as a whole command line, so it does just what you want. The only problem is in constructing the right
information in co mm an dl in e.

5. 3. C Co on nt tr ro ol l o of f P Pr ro oc ce es ss se es s — — F Fo or rk k a an nd d W Wa ai it t

So far what we’ve talked about isn’t really all that useful by itself. Now we will show how to
regain control after running a program with ex ec l or ex ec v. Since these routines simply overlay the
new program on the old one, to save the old one requires that it first be split into two copies; one of
these can be overlaid, while the other waits for the new, overlaying program to finish. The splitting is
done by a routine called fo rk:

pro c—i d = for k() ;

splits the program into two copies, both of which continue to run. The only difference between the two
is the value of pr oc —i d, the ‘‘process id.’’ In one of these processes (the ‘‘child’’), pr oc —i d is
zero. In the other (the ‘‘parent’’), pr oc —i d is non-zero; it is the process number of the child. Thus
the basic way to call, and return from, another program is

if (fo rk() == 0)
exe cl("/bin/sh" , "sh ", "-c ", cmd , NUL L);/* in chi ld */

And in fact, except for handling errors, this is sufficient. The fo rk makes two copies of the program.
In the child, the value returned by fo rk is zero, so it calls ex ec l which does the co mm an d and then
dies. In the parent, fo rk returns non-zero so it skips the ex ec l. (If there is any error, fo rk returns
-1).

More often, the parent wants to wait for the child to terminate before continuing itself. This can be
done with the function wa it:

int sta tus ;

if (fo rk() == 0)
exe cl(...);

wai t(& sta tus);

This still doesn’t handle any abnormal conditions, such as a failure of the ex ec l or fo rk, or the pos-
sibility that there might be more than one child running simultaneously. (The wa it returns the process
id of the terminated child, if you want to check it against the value returned by fo rk.) Finally, this
fragment doesn’t deal with any funny behavior on the part of the child (which is reported in st at us).
Still, these three lines are the heart of the standard library’s sy st em routine, which we’ll show in a
moment.

The st at us returned by wa it encodes in its low-order eight bits the system’s idea of the child’s
termination status; it is 0 for normal termination and non-zero to indicate various kinds of problems.
The next higher eight bits are taken from the argument of the call to ex it which caused a normal ter-
mination of the child process. It is good coding practice for all programs to return meaningful status.

When a program is called by the shell, the three file descriptors 0, 1, and 2 are set up pointing at
the right files, and all other possible file descriptors are available for use. When this program calls
another one, correct etiquette suggests making sure the same conditions hold. Neither fo rk nor the
ex ec calls affects open files in any way. If the parent is buffering output that must come out before
output from the child, the parent must flush its buffers before the ex ec l. Conversely, if a caller
buffers an input stream, the called program will lose any information that has been read by the caller.

- 12 -

5. 4. P Pi ip pe es s

A pipe is an I/O channel intended for use between two cooperating processes: one process writes
into the pipe, while the other reads. The system looks after buffering the data and synchronizing the
two processes. Most pipes are created by the shell, as in

ls | pr

which connects the standard output of ls to the standard input of pr. Sometimes, however, it is most
convenient for a process to set up its own plumbing; in this section, we will illustrate how the pipe con-
nection is established and used.

The system call pi pe creates a pipe. Since a pipe is used for both reading and writing, two file
descriptors are returned; the actual usage is like this:

int fd[2];

sta t = pip e(f d);
if (st at == -1)

/* the re was an err or ... */

fd is an array of two file descriptors, where fd [0] is the read side of the pipe and fd [1] is for writ-
ing. These may be used in re ad, wr it e and cl os e calls just like any other file descriptors.

If a process reads a pipe which is empty, it will wait until data arrives; if a process writes into a
pipe which is too full, it will wait until the pipe empties somewhat. If the write side of the pipe is
closed, a subsequent re ad will encounter end of file.

To illustrate the use of pipes in a realistic setting, let us write a function called
po pe n(cm d, mo de), which creates a process cm d (just as sy st em does), and returns a file descrip-
tor that will either read or write that process, according to mo de. That is, the call

fou t = pop en("pr ", WRI TE) ;

creates a process that executes the pr command; subsequent wr it e calls using the file descriptor
fo ut will send their data to that process through the pipe.

po pe n first creates the the pipe with a pi pe system call; it then fo rks to create two copies of
itself. The child decides whether it is supposed to read or write, closes the other side of the pipe, then
calls the shell (via ex ec l) to run the desired process. The parent likewise closes the end of the pipe it
does not use. These closes are necessary to make end-of-file tests work properly. For example, if a
child that intends to read fails to close the write end of the pipe, it will never see the end of the pipe
file, just because there is one writer potentially active.

- 13 -

#in clu de <st dio .h>

#de fin e REA D 0
#de fin e WRI TE 1
#de fin e tst (a, b) (mo de == REA D ? (b) : (a))
sta tic int pop en— pid ;

pop en(cmd , mod e)
cha r *cmd ;
int mod e;
{

int p[2];

if (pi pe(p) < 0)
ret urn (NU LL) ;

if ((p ope n—p id = for k()) == 0) {
clo se(tst (p[WRI TE] , p[R EAD])) ;
clo se(tst (0, 1)) ;
dup (ts t(p [RE AD] , p[W RIT E]));
clo se(tst (p[REA D], p[W RIT E]));
exe cl("/bin/sh" , "sh ", "-c ", cmd , 0);
—ex it(1); /* dis ast er has occ urr ed if we get her e */

}
if (po pen —pi d == -1)

ret urn (NU LL) ;
clo se(tst (p[REA D], p[W RIT E]));
ret urn (ts t(p [WR ITE], p[R EAD])) ;

}

The sequence of cl os es in the child is a bit tricky. Suppose that the task is to create a child process
that will read data from the parent. Then the first cl os e closes the write side of the pipe, leaving the
read side open. The lines

clo se(tst (0, 1)) ;
dup (ts t(p [RE AD] , p[W RIT E]));

are the conventional way to associate the pipe descriptor with the standard input of the child. The
cl os e closes file descriptor 0, that is, the standard input. du p is a system call that returns a duplicate
of an already open file descriptor. File descriptors are assigned in increasing order and the first available
one is returned, so the effect of the du p is to copy the file descriptor for the pipe (read side) to file
descriptor 0; thus the read side of the pipe becomes the standard input. (Yes, this is a bit tricky, but it’s
a standard idiom.) Finally, the old read side of the pipe is closed.

A similar sequence of operations takes place when the child process is supposed to write from the
parent instead of reading. You may find it a useful exercise to step through that case.

The job is not quite done, for we still need a function pc lo se to close the pipe created by
po pe n. The main reason for using a separate function rather than cl os e is that it is desirable to wait
for the termination of the child process. First, the return value from pc lo se indicates whether the pro-
cess succeeded. Equally important when a process creates several children is that only a bounded
number of unwaited-for children can exist, even if some of them have terminated; performing the wa it
lays the child to rest. Thus:

- 14 -

#in clu de <si gna l.h >

pcl ose (fd) /* clo se pip e fd */

int fd;
{

reg ist er r, (*hst at) (), (*ist at) (), (*qst at) ();
int sta tus ;
ext ern int pop en— pid ;

clo se(fd) ;
ist at = sig nal (SI GIN T, SIG —IG N);
qst at = sig nal (SI GQU IT, SIG —IG N);
hst at = sig nal (SI GHU P, SIG —IG N);
whi le ((r = wai t(& sta tus)) != pop en— pid && r != -1) ;
if (r == -1)

sta tus = -1;
sig nal (SI GIN T, ist at) ;
sig nal (SI GQU IT, qst at) ;
sig nal (SI GHU P, hst at) ;
ret urn (st atu s);

}

The calls to si gn al make sure that no interrupts, etc., interfere with the waiting process; this is the
topic of the next section.

The routine as written has the limitation that only one pipe may be open at once, because of the sin-
gle shared variable po pe n— pi d; it really should be an array indexed by file descriptor. A po pe n
function, with slightly different arguments and return value is available as part of the standard I/O
library discussed below. As currently written, it shares the same limitation.

6. S SI IG GN NA AL LS S — — I IN NT TE ER RR RU UP PT TS S A AN ND D A AL LL L T TH HA AT T

This section is concerned with how to deal gracefully with signals from the outside world (like
interrupts), and with program faults. Since there’s nothing very useful that can be done from within C
about program faults, which arise mainly from illegal memory references or from execution of peculiar
instructions, we’ll discuss only the outside-world signals: interrupt , which is sent when the DEL charac-
ter is typed; quit , generated by the FS character; hangup , caused by hanging up the phone; and ter-
minate , generated by the kill command. When one of these events occurs, the signal is sent to all
processes which were started from the corresponding terminal; unless other arrangements have been
made, the signal terminates the process. In the quit case, a core image file is written for debugging pur-
poses.

The routine which alters the default action is called si gn al. It has two arguments: the first
specifies the signal, and the second specifies how to treat it. The first argument is just a number code,
but the second is the address is either a function, or a somewhat strange code that requests that the sig-
nal either be ignored, or that it be given the default action. The include file si gn al .h gives names
for the various arguments, and should always be included when signals are used. Thus

#in clu de <si gna l.h >
...

sig nal (SI GIN T, SIG —IG N);

causes interrupts to be ignored, while

sig nal (SI GIN T, SIG —DF L);

restores the default action of process termination. In all cases, si gn al returns the previous value of
the signal. The second argument to si gn al may instead be the name of a function (which has to be
declared explicitly if the compiler hasn’t seen it already). In this case, the named routine will be called
when the signal occurs. Most commonly this facility is used to allow the program to clean up
unfinished business before terminating, for example to delete a temporary file:

- 15 -

#in clu de <si gna l.h >

mai n()
{

int oni ntr ();

if (si gna l(S IGI NT, SIG —IG N) != SIG —IG N)
sig nal (SI GIN T, oni ntr);

/* Pro ces s ... */

exi t(0);
}

oni ntr ()
{

unl ink (te mpf ile);
exi t(1);

}

Why the test and the double call to si gn al? Recall that signals like interrupt are sent to all
processes started from a particular terminal. Accordingly, when a program is to be run non-interactively
(started by &), the shell turns off interrupts for it so it won’t be stopped by interrupts intended for fore-
ground processes. If this program began by announcing that all interrupts were to be sent to the
on in tr routine regardless, that would undo the shell’s effort to protect it when run in the background.

The solution, shown above, is to test the state of interrupt handling, and to continue to ignore inter-
rupts if they are already being ignored. The code as written depends on the fact that si gn al returns
the previous state of a particular signal. If signals were already being ignored, the process should con-
tinue to ignore them; otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and interpret it as a request to stop
what it is doing and return to its own command-processing loop. Think of a text editor: interrupting a
long printout should not cause it to terminate and lose the work already done. The outline of the code
for this case is probably best written like this:

#in clu de <si gna l.h >
#in clu de <se tjm p.h >
jmp —bu f sjb uf;

mai n()
{

int (*ist at) (), oni ntr ();

ist at = sig nal (SI GIN T, SIG —IG N); /* sav e ori gin al sta tus */

set jmp (sj buf); /* sav e cur ren t sta ck pos iti on */

if (is tat != SIG —IG N)
sig nal (SI GIN T, oni ntr);

/* mai n pro ces sin g loo p */

}

oni ntr ()
{

pri ntf ("\nIn ter rup t\n") ;
lon gjm p(s jbu f); /* ret urn to sav ed sta te */

}

The include file se tj mp .h declares the type jm p— bu f an object in which the state can be saved.
sj bu f is such an object; it is an array of some sort. The se tj mp routine then saves the state of

- 16 -

things. When an interrupt occurs, a call is forced to the on in tr routine, which can print a message,
set flags, or whatever. lo ng jm p takes as argument an object stored into by se tj mp, and restores
control to the location after the call to se tj mp, so control (and the stack level) will pop back to the
place in the main routine where the signal is set up and the main loop entered. Notice, by the way, that
the signal gets set again after an interrupt occurs. This is necessary; most signals are automatically reset
to their default action when they occur.

Some programs that want to detect signals simply can’t be stopped at an arbitrary point, for exam-
ple in the middle of updating a linked list. If the routine called on occurrence of a signal sets a flag and
then returns instead of calling ex it or lo ng jm p, execution will continue at the exact point it was
interrupted. The interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is reading the terminal
when the interrupt is sent. The specified routine is duly called; it sets its flag and returns. If it were
really true, as we said above, that ‘‘execution resumes at the exact point it was interrupted,’’ the pro-
gram would continue reading the terminal until the user typed another line. This behavior might well be
confusing, since the user might not know that the program is reading; he presumably would prefer to
have the signal take effect instantly. The method chosen to resolve this difficulty is to terminate the ter-
minal read when execution resumes after the signal, returning an error code which indicates what hap-
pened.

Thus programs which catch and resume execution after signals should be prepared for ‘‘errors’’
which are caused by interrupted system calls. (The ones to watch out for are reads from a terminal,
wa it, and pa us e.) A program whose on in tr program just sets in tf la g, resets the interrupt sig-
nal, and returns, should usually include code like the following when it reads the standard input:

if (ge tch ar() == EOF)
if (in tfl ag)

/* EOF cau sed by int err upt */

els e
/* tru e end -of -fi le */

A final subtlety to keep in mind becomes important when signal-catching is combined with execu-
tion of other programs. Suppose a program catches interrupts, and also includes a method (like ‘‘!’’ in
the editor) whereby other programs can be executed. Then the code should look something like this:

if (fo rk() == 0)
exe cl(...);

sig nal (SI GIN T, SIG —IG N); /* ign ore int err upt s */

wai t(& sta tus); /* unt il the chi ld is don e */

sig nal (SI GIN T, oni ntr); /* res tor e int err upt s */

Why is this? Again, it’s not obvious but not really difficult. Suppose the program you call catches its
own interrupts. If you interrupt the subprogram, it will get the signal and return to its main loop, and
probably read your terminal. But the calling program will also pop out of its wait for the subprogram
and read your terminal. Having two processes reading your terminal is very unfortunate, since the sys-
tem figuratively flips a coin to decide who should get each line of input. A simple way out is to have
the parent program ignore interrupts until the child is done. This reasoning is reflected in the standard
I/O library function sy st em:

- 17 -

#in clu de <si gna l.h >

sys tem (s) /* run com man d str ing s */

cha r *s;
{

int sta tus , pid , w;
reg ist er int (*ist at) (), (*qst at) ();

if ((p id = for k()) == 0) {
exe cl("/bin/sh" , "sh ", "-c ", s, 0);
—ex it(127);

}
ist at = sig nal (SI GIN T, SIG —IG N);
qst at = sig nal (SI GQU IT, SIG —IG N);
whi le ((w = wai t(& sta tus)) != pid && w != -1)

;
if (w == -1)

sta tus = -1;
sig nal (SI GIN T, ist at) ;
sig nal (SI GQU IT, qst at) ;
ret urn (st atu s);

}

As an aside on declarations, the function si gn al obviously has a rather strange second argument.
It is in fact a pointer to a function delivering an integer, and this is also the type of the signal routine
itself. The two values SI G— IG N and SI G— DF L have the right type, but are chosen so they coincide
with no possible actual functions. For the enthusiast, here is how they are defined for the PDP-11; the
definitions should be sufficiently ugly and nonportable to encourage use of the include file.

#de fin e SIG —DF L (in t (*)())0
#de fin e SIG —IG N (in t (*)())1

R Re ef fe er re en nc ce es s

[1] K. L. Thompson and D. M. Ritchie, The UNIX Programmer’s Manual, Bell Laboratories, 1978.

[2] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Inc., 1978.

[3] B. W. Kernighan, ‘‘UNIX for Beginners — Second Edition.’’ Bell Laboratories, 1978.

- 18 -

Appendix — The Standard I/O Library

D. M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

The standard I/O library was designed with the following goals in mind.

1. It must be as efficient as possible, both in time and in space, so that there will be no hesitation in
using it no matter how critical the application.

2. It must be simple to use, and also free of the magic numbers and mysterious calls whose use mars
the understandability and portability of many programs using older packages.

3. The interface provided should be applicable on all machines, whether or not the programs which
implement it are directly portable to other systems, or to machines other than the PDP-11 running a
version of UNIX.

1 1. . G Ge en ne er ra al l U Us sa ag ge e

Each program using the library must have the line

#in clu de <st dio .h>

which defines certain macros and variables. The routines are in the normal C library, so no special
library argument is needed for loading. All names in the include file intended only for internal use
begin with an underscore — to reduce the possibility of collision with a user name. The names intended
to be visible outside the package are

st di n The name of the standard input file

st do ut The name of the standard output file

st de rr The name of the standard error file

EO F is actually – 1, and is the value returned by the read routines on end-of-file or error.

NU LL is a notation for the null pointer, returned by pointer-valued functions to indicate an error

FI LE expands to st ru ct —i ob and is a useful shorthand when declaring pointers to streams.

BU FS IZ is a number (viz. 512) of the size suitable for an I/O buffer supplied by the user. See
se tb uf, below.

ge tc , ge tc ha r, pu tc , pu tc ha r, fe of , fe rr or , fi le no
are defined as macros. Their actions are described below; they are mentioned here to point
out that it is not possible to redeclare them and that they are not actually functions; thus, for
example, they may not have breakpoints set on them.

The routines in this package offer the convenience of automatic buffer allocation and output flushing
where appropriate. The names st di n, st do ut, and st de rr are in effect constants and may not be
assigned to.

2 2. . C Ca al ll ls s

FI LE *fo pe n(fi le na me , ty pe) ch ar *fi le na me , *ty pe ;
opens the file and, if needed, allocates a buffer for it. fi le na me is a character string specifying
the name. ty pe is a character string (not a single character). It may be "r ", "w ", or "a " to
indicate intent to read, write, or append. The value returned is a file pointer. If it is NU LL the
attempt to open failed.

FI LE *fr eo pe n(fi le na me , ty pe , io pt r) ch ar *fi le na me , *ty pe ; FI LE *io pt r;
The stream named by io pt r is closed, if necessary, and then reopened as if by fo pe n. If the
attempt to open fails, NU LL is returned, otherwise io pt r, which will now refer to the new file.
Often the reopened stream is st di n or st do ut.

- 19 -

in t ge tc (i op tr) FI LE *io pt r;
returns the next character from the stream named by io pt r, which is a pointer to a file such as
returned by fo pe n, or the name st di n. The integer EO F is returned on end-of-file or when an
error occurs. The null character \0 is a legal character.

in t fg et c(io pt r) FI LE *io pt r;
acts like ge tc but is a genuine function, not a macro, so it can be pointed to, passed as an argu-
ment, etc.

pu tc (c , io pt r) FI LE *io pt r;
pu tc writes the character c on the output stream named by io pt r, which is a value returned
from fo pe n or perhaps st do ut or st de rr. The character is returned as value, but EO F is
returned on error.

fp ut c(c, io pt r) FI LE *io pt r;
acts like pu tc but is a genuine function, not a macro.

fc lo se (i op tr) FI LE *io pt r;
The file corresponding to io pt r is closed after any buffers are emptied. A buffer allocated by the
I/O system is freed. fc lo se is automatic on normal termination of the program.

ff lu sh (i op tr) FI LE *io pt r;
Any buffered information on the (output) stream named by io pt r is written out. Output files are
normally buffered if and only if they are not directed to the terminal; however, st de rr always
starts off unbuffered and remains so unless se tb uf is used, or unless it is reopened.

ex it (e rr co de);
terminates the process and returns its argument as status to the parent. This is a special version of
the routine which calls ff lu sh for each output file. To terminate without flushing, use —e xi t.

fe of (i op tr) FI LE *io pt r;
returns non-zero when end-of-file has occurred on the specified input stream.

fe rr or (i op tr) FI LE *io pt r;
returns non-zero when an error has occurred while reading or writing the named stream. The error
indication lasts until the file has been closed.

ge tc ha r();
is identical to ge tc (s td in).

pu tc ha r(c) ;
is identical to pu tc (c , st do ut).

ch ar *fg et s(s, n, io pt r) ch ar *s; FI LE *io pt r;
reads up to n- 1 characters from the stream io pt r into the character pointer s. The read ter-
minates with a newline character. The newline character is placed in the buffer followed by a null
character. fg et s returns the first argument, or NU LL if error or end-of-file occurred.

fp ut s(s, io pt r) ch ar *s; FI LE *io pt r;
writes the null-terminated string (character array) s on the stream io pt r. No newline is appended.
No value is returned.

un ge tc (c , io pt r) FI LE *io pt r;
The argument character c is pushed back on the input stream named by io pt r. Only one charac-
ter may be pushed back.

pr in tf (f or ma t, a1 , .. .) ch ar *fo rm at ;
fp ri nt f(io pt r, fo rm at , a1 , .. .) FI LE *io pt r; ch ar *fo rm at ;
sp ri nt f(s, fo rm at , a1 , .. .) ch ar *s, *fo rm at ;

pr in tf writes on the standard output. fp ri nt f writes on the named output stream. sp ri nt f
puts characters in the character array (string) named by s. The specifications are as described in
section pr in tf(3) of the UNIX Programmer’s Manual.

- 20 -

sc an f(fo rm at , a1 , .. .) ch ar *fo rm at ;
fs ca nf (i op tr , fo rm at , a1 , .. .) FI LE *io pt r; ch ar *fo rm at ;
ss ca nf (s , fo rm at , a1 , .. .) ch ar *s, *fo rm at ;

sc an f reads from the standard input. fs ca nf reads from the named input stream. ss ca nf
reads from the character string supplied as s. sc an f reads characters, interprets them according to
a format, and stores the results in its arguments. Each routine expects as arguments a control string
fo rm at, and a set of arguments, each of which must be a pointer, indicating where the converted
input should be stored.

sc an f returns as its value the number of successfully matched and assigned input items. This can
be used to decide how many input items were found. On end of file, EO F is returned; note that this
is different from 0, which means that the next input character does not match what was called for in
the control string.

fr ea d(pt r, si ze of (*pt r) , ni te ms , io pt r) FI LE *io pt r;
reads ni te ms of data beginning at pt r from file io pt r. No advance notification that binary I/O
is being done is required; when, for portability reasons, it becomes required, it will be done by
adding an additional character to the mode-string on the fo pe n call.

fw ri te (p tr , si ze of (*pt r) , ni te ms , io pt r) FI LE *io pt r;
Like fr ea d, but in the other direction.

re wi nd (i op tr) FI LE *io pt r;
rewinds the stream named by io pt r. It is not very useful except on input, since a rewound output
file is still open only for output.

sy st em (s tr in g) ch ar *st ri ng ;
The st ri ng is executed by the shell as if typed at the terminal.

ge tw (i op tr) FI LE *io pt r;
returns the next word from the input stream named by io pt r. EO F is returned on end-of-file or
error, but since this a perfectly good integer fe of and fe rr or should be used. A ‘‘word’’ is 16
bits on the PDP-11.

pu tw (w , io pt r) FI LE *io pt r;
writes the integer w on the named output stream.

se tb uf (i op tr , bu f) FI LE *io pt r; ch ar *bu f;
se tb uf may be used after a stream has been opened but before I/O has started. If bu f is NU LL,
the stream will be unbuffered. Otherwise the buffer supplied will be used. It must be a character
array of sufficient size:

cha r buf [BU FSI Z];

fi le no (i op tr) FI LE *io pt r;
returns the integer file descriptor associated with the file.

fs ee k(io pt r, of fs et , pt rn am e) FI LE *io pt r; lo ng of fs et ;
The location of the next byte in the stream named by io pt r is adjusted. of fs et is a long
integer. If pt rn am e is 0, the offset is measured from the beginning of the file; if pt rn am e is 1,
the offset is measured from the current read or write pointer; if pt rn am e is 2, the offset is meas-
ured from the end of the file. The routine accounts properly for any buffering. (When this routine
is used on non-UNIX systems, the offset must be a value returned from ft el l and the ptrname
must be 0).

lo ng ft el l(io pt r) FI LE *io pt r;
The byte offset, measured from the beginning of the file, associated with the named stream is
returned. Any buffering is properly accounted for. (On non-UNIX systems the value of this call is
useful only for handing to fs ee k, so as to position the file to the same place it was when ft el l
was called.)

- 21 -

ge tp w(ui d, bu f) ch ar *bu f;
The password file is searched for the given integer user ID. If an appropriate line is found, it is
copied into the character array bu f, and 0 is returned. If no line is found corresponding to the user
ID then 1 is returned.

ch ar *ma ll oc (n um);
allocates nu m bytes. The pointer returned is sufficiently well aligned to be usable for any purpose.
NU LL is returned if no space is available.

ch ar *ca ll oc (n um , si ze);
allocates space for nu m items each of size si ze. The space is guaranteed to be set to 0 and the
pointer is sufficiently well aligned to be usable for any purpose. NU LL is returned if no space is
available .

cf re e(pt r) ch ar *pt r;
Space is returned to the pool used by ca ll oc. Disorder can be expected if the pointer was not
obtained from ca ll oc.

The following are macros whose definitions may be obtained by including <c ty pe .h >.

is al ph a(c) returns non-zero if the argument is alphabetic.

is up pe r(c) returns non-zero if the argument is upper-case alphabetic.

is lo we r(c) returns non-zero if the argument is lower-case alphabetic.

is di gi t(c) returns non-zero if the argument is a digit.

is sp ac e(c) returns non-zero if the argument is a spacing character: tab, newline, carriage return,
vertical tab, form feed, space.

is pu nc t(c) returns non-zero if the argument is any punctuation character, i.e., not a space, letter,
digit or control character.

is al nu m(c) returns non-zero if the argument is a letter or a digit.

is pr in t(c) returns non-zero if the argument is printable — a letter, digit, or punctuation character.

is cn tr l(c) returns non-zero if the argument is a control character.

is as ci i(c) returns non-zero if the argument is an ascii character, i.e., less than octal 0200.

to up pe r(c) returns the upper-case character corresponding to the lower-case letter c.

to lo we r(c) returns the lower-case character corresponding to the upper-case letter c.

A Tutorial Introduction to ADB

J. F. Maranzano

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Debugging tools generally provide a wealth of information about the inner work-
ings of programs. These tools have been available on UNIX† to allow users to examine
‘‘core’’ files that result from aborted programs. A new debugging program, ADB, pro-
vides enhanced capabilities to examine "core" and other program files in a variety of
formats, run programs with embedded breakpoints and patch files.

ADB is an indispensable but complex tool for debugging crashed systems and/or
programs. This document provides an introduction to ADB with examples of its use.
It explains the various formatting options, techniques for debugging C programs, exam-
ples of printing file system information and patching.

May 5, 1977

_ ______________
†UNIX is a Trademark of Bell Laboratories.

A Tutorial Introduction to ADB

J. F. Maranzano

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction

ADB is a new debugging program that is available on UNIX. It provides capabilities to look at
‘‘core’’ files resulting from aborted programs, print output in a variety of formats, patch files, and run
programs with embedded breakpoints. This document provides examples of the more useful features of
ADB. The reader is expected to be familiar with the basic commands on UNIX† with the C language,
and with References 1, 2 and 3.

2. A Quick Survey

2.1. Invocation

ADB is invoked as:

adb objfile corefile

where objfile is an executable UNIX file and corefile is a core image file. Many times this will look
like:

adb a.out core

or more simply:

adb

where the defaults are a.out and core respectively. The filename minus (–) means ignore this argument
as in:

adb – core

ADB has requests for examining locations in either file. The ? request examines the contents of
objfile, the / request examines the corefile. The general form of these requests is:

address ? format

or

address / format

2.2. Current Address

ADB maintains a current address, called dot, similar in function to the current pointer in the
UNIX editor. When an address is entered, the current address is set to that location, so that:

0126?i

sets dot to octal 126 and prints the instruction at that address. The request:

†UNIX is a Trademark of Bell Laboratories.

- 2 -

.,10/d

prints 10 decimal numbers starting at dot. Dot ends up referring to the address of the last item printed.
When used with the ? or / requests, the current address can be advanced by typing newline; it can be
decremented by typing ˆ.

Addresses are represented by expressions. Expressions are made up from decimal, octal, and hex-
adecimal integers, and symbols from the program under test. These may be combined with the opera-
tors +, – , *, % (integer division), & (bitwise and),  (bitwise inclusive or), # (round up to the next mul-
tiple), and ˜ (not). (All arithmetic within ADB is 32 bits.) When typing a symbolic address for a C
program, the user can type name or _name; ADB will recognize both forms.

2.3. Formats

To print data, a user specifies a collection of letters and characters that describe the format of the
printout. Formats are "remembered" in the sense that typing a request without one will cause the new
printout to appear in the previous format. The following are the most commonly used format letters.

b one byte in octal
c one byte as a character
o one word in octal
d one word in decimal
f two words in floating point
i PDP 11 instruction
s a null terminated character string
a the value of dot
u one word as unsigned integer
n print a newline
r print a blank space
ˆ backup dot

(Format letters are also available for "long" values, for example, ‘D’ for long decimal, and ‘F’ for dou-
ble floating point.) For other formats see the ADB manual.

2.4. General Request Meanings

The general form of a request is:

address,count command modifier

which sets ‘dot’ to address and executes the command count times.

The following table illustrates some general ADB command meanings:

Command Meaning
? Print contents from a.out file
/ Print contents from core file
= Print value of "dot"
: Breakpoint control
$ Miscellaneous requests
; Request separator
! Escape to shell

ADB catches signals, so a user cannot use a quit signal to exit from ADB. The request $q or $Q
(or cntl-D) must be used to exit from ADB.

3. Debugging C Programs

- 3 -

3.1. Debugging A Core Image

Consider the C program in Figure 1. The program is used to illustrate a common error made by C
programmers. The object of the program is to change the lower case "t" to upper case in the string
pointed to by charp and then write the character string to the file indicated by argument 1. The bug
shown is that the character "T" is stored in the pointer charp instead of the string pointed to by charp.
Executing the program produces a core file because of an out of bounds memory reference.

ADB is invoked by:

adb a.out core

The first debugging request:

$c

is used to give a C backtrace through the subroutines called. As shown in Figure 2 only one function
(main) was called and the arguments argc and argv have octal values 02 and 0177762 respectively.
Both of these values look reasonable; 02 = two arguments, 0177762 = address on stack of parameter
vector.
The next request:

$C

is used to give a C backtrace plus an interpretation of all the local variables in each function and their
values in octal. The value of the variable cc looks incorrect since cc was declared as a character.

The next request:

$r

prints out the registers including the program counter and an interpretation of the instruction at that loca-
tion.

The request:

$e

prints out the values of all external variables.

A map exists for each file handled by ADB. The map for the a.out file is referenced by ? whereas
the map for core file is referenced by /. Furthermore, a good rule of thumb is to use ? for instructions
and / for data when looking at programs. To print out information about the maps type:

$m

This produces a report of the contents of the maps. More about these maps later.

In our example, it is useful to see the contents of the string pointed to by charp. This is done by:

*charp/s

which says use charp as a pointer in the core file and print the information as a character string. This
printout clearly shows that the character buffer was incorrectly overwritten and helps identify the error.
Printing the locations around charp shows that the buffer is unchanged but that the pointer is destroyed.
Using ADB similarly, we could print information about the arguments to a function. The request:

main.argc/d

prints the decimal core image value of the argument argc in the function main.
The request:

*main.argv,3/o

prints the octal values of the three consecutive cells pointed to by argv in the function main. Note that
these values are the addresses of the arguments to main. Therefore:

0177770/s

- 4 -

prints the ASCII value of the first argument. Another way to print this value would have been

*"/s

The " means ditto which remembers the last address typed, in this case main.argc ; the * instructs ADB
to use the address field of the core file as a pointer.

The request:

.=o

prints the current address (not its contents) in octal which has been set to the address of the first argu-
ment. The current address, dot, is used by ADB to "remember" its current location. It allows the user
to reference locations relative to the current address, for example:

.– 10/d

3.2. Multiple Functions

Consider the C program illustrated in Figure 3. This program calls functions f, g, and h until the
stack is exhausted and a core image is produced.

Again you can enter the debugger via:

adb

which assumes the names a.out and core for the executable file and core image file respectively. The
request:

$c

will fill a page of backtrace references to f, g, and h. Figure 4 shows an abbreviated list (typing DEL
will terminate the output and bring you back to ADB request level).

The request:

,5$C

prints the five most recent activations.

Notice that each function (f,g,h) has a counter of the number of times it was called.

The request:

fcnt/d

prints the decimal value of the counter for the function f. Similarly gcnt and hcnt could be printed. To
print the value of an automatic variable, for example the decimal value of x in the last call of the func-
tion h, type:

h.x/d

It is currently not possible in the exported version to print stack frames other than the most recent
activation of a function. Therefore, a user can print everything with $C or the occurrence of a variable
in the most recent call of a function. It is possible with the $C request, however, to print the stack
frame starting at some address as address$C.

3.3. Setting Breakpoints

Consider the C program in Figure 5. This program, which changes tabs into blanks, is adapted
from Software Tools by Kernighan and Plauger, pp. 18-27.

We will run this program under the control of ADB (see Figure 6a) by:

adb a.out –

Breakpoints are set in the program as:

address:b [request]

- 5 -

The requests:

settab+4:b
fopen+4:b
getc+4:b
tabpos+4:b

set breakpoints at the start of these functions. C does not generate statement labels. Therefore it is
currently not possible to plant breakpoints at locations other than function entry points without a
knowledge of the code generated by the C compiler. The above addresses are entered as symbol+4 so
that they will appear in any C backtrace since the first instruction of each function is a call to the C save
routine (csv). Note that some of the functions are from the C library.

To print the location of breakpoints one types:

$b

The display indicates a count field. A breakpoint is bypassed count – 1 times before causing a stop.
The command field indicates the ADB requests to be executed each time the breakpoint is encountered.
In our example no command fields are present.

By displaying the original instructions at the function settab we see that the breakpoint is set after
the jsr to the C save routine. We can display the instructions using the ADB request:

settab,5?ia

This request displays five instructions starting at settab with the addresses of each location displayed.
Another variation is:

settab,5?i

which displays the instructions with only the starting address.

Notice that we accessed the addresses from the a.out file with the ? command. In general when
asking for a printout of multiple items, ADB will advance the current address the number of bytes
necessary to satisfy the request; in the above example five instructions were displayed and the current
address was advanced 18 (decimal) bytes.

To run the program one simply types:

:r

To delete a breakpoint, for instance the entry to the function settab, one types:

settab+4:d

To continue execution of the program from the breakpoint type:

:c

Once the program has stopped (in this case at the breakpoint for fopen), ADB requests can be
used to display the contents of memory. For example:

$C

to display a stack trace, or:

tabs,3/8o

to print three lines of 8 locations each from the array called tabs. By this time (at location fopen) in the
C program, settab has been called and should have set a one in every eighth location of tabs.

3.4. Advanced Breakpoint Usage

We continue execution of the program with:

:c

- 6 -

See Figure 6b. Getc is called three times and the contents of the variable c in the function main are
displayed each time. The single character on the left hand edge is the output from the C program. On
the third occurrence of getc the program stops. We can look at the full buffer of characters by typing:

ibuf+6/20c

When we continue the program with:

:c

we hit our first breakpoint at tabpos since there is a tab following the "This" word of the data.

Several breakpoints of tabpos will occur until the program has changed the tab into equivalent
blanks. Since we feel that tabpos is working, we can remove the breakpoint at that location by:

tabpos+4:d

If the program is continued with:

:c

it resumes normal execution after ADB prints the message

a.out:running

The UNIX quit and interrupt signals act on ADB itself rather than on the program being
debugged. If such a signal occurs then the program being debugged is stopped and control is returned
to ADB. The signal is saved by ADB and is passed on to the test program if:

:c

is typed. This can be useful when testing interrupt handling routines. The signal is not passed on to the
test program if:

:c 0

is typed.

Now let us reset the breakpoint at settab and display the instructions located there when we reach
the breakpoint. This is accomplished by:

settab+4:b settab,5?ia *

It is also possible to execute the ADB requests for each occurrence of the breakpoint but only stop after
the third occurrence by typing:

getc+4,3:b main.c?C *

This request will print the local variable c in the function main at each occurrence of the breakpoint.
The semicolon is used to separate multiple ADB requests on a single line.

Warning: setting a breakpoint causes the value of dot to be changed; executing the program under
ADB does not change dot. Therefore:

settab+4:b .,5?ia
fopen+4:b

will print the last thing dot was set to (in the example fopen+4) not the current location (settab+4) at
which the program is executing.

* Owing to a bug in early versions of ADB (including the version distributed in Generic 3 UNIX) these statements must
be written as:

settab+4:b settab,5?ia;0
getc+4,3:b main.c?C;0
settab+4:b settab,5?ia; ptab/o;0

Note that ;0 will set dot to zero and stop at the breakpoint.

- 7 -

A breakpoint can be overwritten without first deleting the old breakpoint. For example:

settab+4:b settab,5?ia; ptab/o *

could be entered after typing the above requests.

Now the display of breakpoints:

$b

shows the above request for the settab breakpoint. When the breakpoint at settab is encountered the
ADB requests are executed. Note that the location at settab+4 has been changed to plant the break-
point; all the other locations match their original value.

Using the functions, f, g and h shown in Figure 3, we can follow the execution of each function
by planting non-stopping breakpoints. We call ADB with the executable program of Figure 3 as fol-
lows:

adb ex3 –

Suppose we enter the following breakpoints:

h+4:b hcnt/d; h.hi/; h.hr/
g+4:b gcnt/d; g.gi/; g.gr/
f+4:b fcnt/d; f.fi/; f.fr/
:r

Each request line indicates that the variables are printed in decimal (by the specification d). Since the
format is not changed, the d can be left off all but the first request.

The output in Figure 7 illustrates two points. First, the ADB requests in the breakpoint line are
not examined until the program under test is run. That means any errors in those ADB requests is not
detected until run time. At the location of the error ADB stops running the program.

The second point is the way ADB handles register variables. ADB uses the symbol table to
address variables. Register variables, like f.fr above, have pointers to uninitialized places on the stack.
Therefore the message "symbol not found".

Another way of getting at the data in this example is to print the variables used in the call as:

f+4:b fcnt/d; f.a/; f.b/; f.fi/
g+4:b gcnt/d; g.p/; g.q/; g.gi/
:c

The operator / was used instead of ? to read values from the core file. The output for each function, as
shown in Figure 7, has the same format. For the function f, for example, it shows the name and value
of the external variable fcnt. It also shows the address on the stack and value of the variables a, b and
fi.

Notice that the addresses on the stack will continue to decrease until no address space is left for
program execution at which time (after many pages of output) the program under test aborts. A display
with names would be produced by requests like the following:

f+4:b fcnt/d; f.a/"a="d; f.b/"b="d; f.fi/"fi="d

In this format the quoted string is printed literally and the d produces a decimal display of the variables.
The results are shown in Figure 7.

3.5. Other Breakpoint Facilities

• Arguments and change of standard input and output are passed to a program as:

:r arg1 arg2 ... <infile >outfile

This request kills any existing program under test and starts the a.out afresh.

- 8 -

• The program being debugged can be single stepped by:

:s

If necessary, this request will start up the program being debugged and stop after executing the first
instruction.

• ADB allows a program to be entered at a specific address by typing:

address:r

• The count field can be used to skip the first n breakpoints as:

,n:r

The request:

,n:c

may also be used for skipping the first n breakpoints when continuing a program.

• A program can be continued at an address different from the breakpoint by:

address:c

• The program being debugged runs as a separate process and can be killed by:

:k

4. Maps

UNIX supports several executable file formats. These are used to tell the loader how to load the
program file. File type 407 is the most common and is generated by a C compiler invocation such as cc
pgm.c. A 410 file is produced by a C compiler command of the form cc -n pgm.c, whereas a 411 file
is produced by cc -i pgm.c. ADB interprets these different file formats and provides access to the dif-
ferent segments through a set of maps (see Figure 8). To print the maps type:

$m

In 407 files, both text (instructions) and data are intermixed. This makes it impossible for ADB to
differentiate data from instructions and some of the printed symbolic addresses look incorrect; for exam-
ple, printing data addresses as offsets from routines.

In 410 files (shared text), the instructions are separated from data and ?* accesses the data part of
the a.out file. The ?* request tells ADB to use the second part of the map in the a.out file. Accessing
data in the core file shows the data after it was modified by the execution of the program. Notice also
that the data segment may have grown during program execution.

In 411 files (separated I & D space), the instructions and data are also separated. However, in this
case, since data is mapped through a separate set of segmentation registers, the base of the data segment
is also relative to address zero. In this case since the addresses overlap it is necessary to use the ?*
operator to access the data space of the a.out file. In both 410 and 411 files the corresponding core file
does not contain the program text.

Figure 9 shows the display of three maps for the same program linked as a 407, 410, 411 respec-
tively. The b, e, and f fields are used by ADB to map addresses into file addresses. The "f1" field is
the length of the header at the beginning of the file (020 bytes for an a.out file and 02000 bytes for a
core file). The "f2" field is the displacement from the beginning of the file to the data. For a 407 file
with mixed text and data this is the same as the length of the header; for 410 and 411 files this is the
length of the header plus the size of the text portion.

The "b" and "e" fields are the starting and ending locations for a segment. Given an address, A,
the location in the file (either a.out or core) is calculated as:

- 9 -

b1≤A≤e1 => file address = (A– b1)+f1
b2≤A≤e2 => file address = (A– b2)+f2

A user can access locations by using the ADB defined variables. The $v request prints the variables ini-
tialized by ADB:

b base address of data segment
d length of the data segment
s length of the stack
t length of the text
m execution type (407,410,411)

In Figure 9 those variables not present are zero. Use can be made of these variables by expres-
sions such as:

<b

in the address field. Similarly the value of the variable can be changed by an assignment request such
as:

02000>b

that sets b to octal 2000. These variables are useful to know if the file under examination is an execut-
able or core image file.

ADB reads the header of the core image file to find the values for these variables. If the second
file specified does not seem to be a core file, or if it is missing then the header of the executable file is
used instead.

5. Advanced Usage

It is possible with ADB to combine formatting requests to provide elaborate displays. Below are
several examples.

5.1. Formatted dump

The line:

<b,– 1/4o4ˆ8Cn

prints 4 octal words followed by their ASCII interpretation from the data space of the core image file.
Broken down, the various request pieces mean:

<b The base address of the data segment.

<b,– 1 Print from the base address to the end of file. A negative count is used
here and elsewhere to loop indefinitely or until some error condition (like
end of file) is detected.

The format 4o4ˆ8Cn is broken down as follows:

4o Print 4 octal locations.

4ˆ Backup the current address 4 locations (to the original start of the field).

8C Print 8 consecutive characters using an escape convention; each character
in the range 0 to 037 is printed as @ followed by the corresponding char-
acter in the range 0140 to 0177. An @ is printed as @@.

n Print a newline.

- 10 -

The request:

<b,<d/4o4ˆ8Cn

could have been used instead to allow the printing to stop at the end of the data segment (<d provides
the data segment size in bytes).

The formatting requests can be combined with ADB’s ability to read in a script to produce a core
image dump script. ADB is invoked as:

adb a.out core < dump

to read in a script file, dump, of requests. An example of such a script is:

120$w
4095$s
$v
=3n
$m
=3n"C Stack Backtrace"
$C
=3n"C External Variables"
$e
=3n"Registers"
$r
0$s
=3n"Data Segment"
<b,– 1/8ona

The request 120$w sets the width of the output to 120 characters (normally, the width is 80 char-
acters). ADB attempts to print addresses as:

symbol + offset

The request 4095$s increases the maximum permissible offset to the nearest symbolic address from 255
(default) to 4095. The request = can be used to print literal strings. Thus, headings are provided in this
dump program with requests of the form:

=3n"C Stack Backtrace"

that spaces three lines and prints the literal string. The request $v prints all non-zero ADB variables
(see Figure 8). The request 0$s sets the maximum offset for symbol matches to zero thus suppressing
the printing of symbolic labels in favor of octal values. Note that this is only done for the printing of
the data segment. The request:

<b,– 1/8ona

prints a dump from the base of the data segment to the end of file with an octal address field and eight
octal numbers per line.

Figure 11 shows the results of some formatting requests on the C program of Figure 10.

5.2. Directory Dump

As another illustration (Figure 12) consider a set of requests to dump the contents of a directory
(which is made up of an integer inumber followed by a 14 character name):

adb dir –
=n8t"Inum"8t"Name"
0,– 1? u8t14cn

In this example, the u prints the inumber as an unsigned decimal integer, the 8t means that ADB will
space to the next multiple of 8 on the output line, and the 14c prints the 14 character file name.

- 11 -

5.3. Ilist Dump

Similarly the contents of the ilist of a file system, (e.g. /dev/src, on UNIX systems distributed by
the UNIX Support Group; see UNIX Programmer’s Manual Section V) could be dumped with the fol-
lowing set of requests:

adb /dev/src –
02000>b
?m <b
<b,– 1?"flags"8ton"links,uid,gid"8t3bn",size"8tbrdn"addr"8t8un"times"8t2Y2na

In this example the value of the base for the map was changed to 02000 (by saying ?m<b) since that is
the start of an ilist within a file system. An artifice (brd above) was used to print the 24 bit size field as
a byte, a space, and a decimal integer. The last access time and last modify time are printed with the
2Y operator. Figure 12 shows portions of these requests as applied to a directory and file system.

5.4. Converting values

ADB may be used to convert values from one representation to another. For example:

072 = odx

will print

072 58 #3a

which is the octal, decimal and hexadecimal representations of 072 (octal). The format is remembered
so that typing subsequent numbers will print them in the given formats. Character values may be con-
verted similarly, for example:

’a’ = co

prints

a 0141

It may also be used to evaluate expressions but be warned that all binary operators have the same pre-
cedence which is lower than that for unary operators.

6. Patching

Patching files with ADB is accomplished with the write, w or W, request (which is not like the ed
editor write command). This is often used in conjunction with the locate, l or L request. In general, the
request syntax for l and w are similar as follows:

?l value

The request l is used to match on two bytes, L is used for four bytes. The request w is used to write
two bytes, whereas W writes four bytes. The value field in either locate or write requests is an expres-
sion. Therefore, decimal and octal numbers, or character strings are supported.

In order to modify a file, ADB must be called as:

adb – w file1 file2

When called with this option, file1 and file2 are created if necessary and opened for both reading and
writing.

For example, consider the C program shown in Figure 10. We can change the word "This" to
"The " in the executable file for this program, ex7, by using the following requests:

adb – w ex7 –
?l ’Th’
?W ’The ’

The request ?l starts at dot and stops at the first match of "Th" having set dot to the address of the

- 12 -

location found. Note the use of ? to write to the a.out file. The form ?* would have been used for a
411 file.

More frequently the request will be typed as:

?l ’Th’; ?s

and locates the first occurrence of "Th" and print the entire string. Execution of this ADB request will
set dot to the address of the "Th" characters.

As another example of the utility of the patching facility, consider a C program that has an inter-
nal logic flag. The flag could be set by the user through ADB and the program run. For example:

adb a.out –
:s arg1 arg2
flag/w 1
:c

The :s request is normally used to single step through a process or start a process in single step mode.
In this case it starts a.out as a subprocess with arguments arg1 and arg2. If there is a subprocess run-
ning ADB writes to it rather than to the file so the w request causes flag to be changed in the memory
of the subprocess.

7. Anomalies

Below is a list of some strange things that users should be aware of.

1. Function calls and arguments are put on the stack by the C save routine. Putting breakpoints at
the entry point to routines means that the function appears not to have been called when the break-
point occurs.

2. When printing addresses, ADB uses either text or data symbols from the a.out file. This some-
times causes unexpected symbol names to be printed with data (e.g. savr5+022). This does not
happen if ? is used for text (instructions) and / for data.

3. ADB cannot handle C register variables in the most recently activated function.

8. Acknowledgements

The authors are grateful for the thoughtful comments on how to organize this document from R.
B. Brandt, E. N. Pinson and B. A. Tague. D. M. Ritchie made the system changes necessary to accom-
modate tracing within ADB. He also participated in discussions during the writing of ADB. His earlier
work with DB and CDB led to many of the features found in ADB.

9. References

1. D. M. Ritchie and K. Thompson, ‘‘The UNIX Time-Sharing System,’’ CACM, July, 1974.

2. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.

3. K. Thompson and D. M. Ritchie, UNIX Programmer’s Manual - 7th Edition, 1978.

4. B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976.

- 13 -

Figure 1: C program with pointer bug

struct buf {
int fildes;
int nleft;
char *nextp;
char buff[512];
}bb;

struct buf *obuf;

char *charp "this is a sentence.";

main(argc,argv)
int argc;
char **argv;
{

char cc;

if(argc < 2) {
printf("Input file missing\n");
exit(8);

}

if((fcreat(argv[1],obuf)) < 0){
printf("%s : not found\n", argv[1]);
exit(8);

}
charp = ´T´;

printf("debug 1 %s\n",charp);
while(cc= *charp++)

putc(cc,obuf);
fflush(obuf);

}

- 14 -

Figure 2: ADB output for C program of Figure 1

adb a.out core
$c
˜main(02,0177762)
$C
˜main(02,0177762)

argc: 02
argv: 0177762
cc: 02124

$r
ps 0170010
pc 0204 ˜main+0152
sp 0177740
r5 0177752
r4 01
r3 0
r2 0
r1 0
r0 0124
˜main+0152: mov _obuf,(sp)
$e
savr5: 0
_obuf: 0
_charp: 0124
_errno: 0
_fout: 0
$m
text map `ex1´
b1 = 0 e1 = 02360 f1 = 020
b2 = 0 e2 = 02360 f2 = 020
data map `core1´
b1 = 0 e1 = 03500 f1 = 02000
b2 = 0175400 e2 = 0200000 f2 = 05500
*charp/s
0124: TTTLx Nh@x&_
˜
charp/s
_charp: T

_charp+02: this is a sentence.

_charp+026: Input file missing
main.argc/d
0177756: 2
*main.argv/3o
0177762: 0177770 0177776 0177777
0177770/s
0177770: a.out
*main.argv/3o
0177762: 0177770 0177776 0177777
*"/s
0177770: a.out
.=o

0177770
.−10/d

0177756: 2
$q

- 15 -

Figure 3: Multiple function C program for stack trace illustration

int fcnt,gcnt,hcnt;
h(x,y)
{

int hi; register int hr;
hi = x+1;
hr = x−y+1;
hcnt++ ;
hj:
f(hr,hi);

}

g(p,q)
{

int gi; register int gr;
gi = q−p;
gr = q−p+1;
gcnt++ ;
gj:
h(gr,gi);

}

f(a,b)
{

int fi; register int fr;
fi = a+2*b;
fr = a+b;
fcnt++ ;
fj:
g(fr,fi);

}

main()
{

f(1,1);
}

- 16 -

Figure 4: ADB output for C program of Figure 3

adb
$c
˜h(04452,04451)
˜g(04453,011124)
˜f(02,04451)
˜h(04450,04447)
˜g(04451,011120)
˜f(02,04447)
˜h(04446,04445)
˜g(04447,011114)
˜f(02,04445)
˜h(04444,04443)
HIT DEL KEY
adb
,5$C
˜h(04452,04451)

x: 04452
y: 04451
hi: ?

˜g(04453,011124)
p: 04453
q: 011124
gi: 04451
gr: ?

˜f(02,04451)
a: 02
b: 04451
fi: 011124
fr: 04453

˜h(04450,04447)
x: 04450
y: 04447
hi: 04451
hr: 02

˜g(04451,011120)
p: 04451
q: 011120
gi: 04447
gr: 04450

fcnt/d
_fcnt: 1173
gcnt/d
_gcnt: 1173
hcnt/d
_hcnt: 1172
h.x/d
022004: 2346
$q

- 17 -

Figure 5: C program to decode tabs

#define MAXLINE 80
#define YES 1
#define NO 0
#define TABSP 8

char input[] "data";
char ibuf[518];
int tabs[MAXLINE];

main()
{

int col, *ptab;
char c;

ptab = tabs;
settab(ptab); /*Set initial tab stops */
col = 1;
if(fopen(input,ibuf) < 0) {

printf("%s : not found\n",input);
exit(8);

}
while((c = getc(ibuf)) != −1) {

switch(c) {
case ′\t′: /* TAB */

while(tabpos(col) != YES) {
putchar(′ ′); /* put BLANK */
col++ ;

}
break;

case ′\n′: /*NEWLINE */
putchar(′\n′);
col = 1;
break;

default:
putchar(c);
col++ ;

}
}

}

/* Tabpos return YES if col is a tab stop */
tabpos(col)
int col;
{

if(col > MAXLINE)
return(YES);

else
return(tabs[col]);

}

/* Settab - Set initial tab stops */
settab(tabp)
int *tabp;
{

int i;

for(i = 0; i<= MAXLINE; i++)
(i%TABSP) ? (tabs[i] = NO) : (tabs[i] = YES);

}

- 18 -

Figure 6a: ADB output for C program of Figure 5

adb a.out −
settab+4:b
fopen+4:b
getc+4:b
tabpos+4:b
$b
breakpoints
count bkpt command
1 ˜tabpos+04
1 _getc+04
1 _fopen+04
1 ˜settab+04
settab,5?ia
˜settab: jsr r5,csv
˜settab+04: tst −(sp)
˜settab+06: clr 0177770(r5)
˜settab+012: cmp $0120,0177770(r5)
˜settab+020: blt ˜settab+076
˜settab+022:
settab,5?i
˜settab: jsr r5,csv

tst −(sp)
clr 0177770(r5)
cmp $0120,0177770(r5)
blt ˜settab+076

:r
a.out: running
breakpoint ˜settab+04: tst −(sp)
settab+4:d
:c
a.out: running
breakpoint _fopen+04: mov 04(r5),nulstr+012
$C
_fopen(02302,02472)
˜main(01,0177770)

col: 01
c: 0
ptab: 03500

tabs,3/8o
03500: 01 0 0 0 0 0 0 0

01 0 0 0 0 0 0 0
01 0 0 0 0 0 0 0

- 19 -

Figure 6b: ADB output for C program of Figure 5

:c
a.out: running
breakpoint _getc+04: mov 04(r5),r1
ibuf+6/20c
__cleanu+0202: This is a test of
:c
a.out: running
breakpoint ˜tabpos+04: cmp $0120,04(r5)
tabpos+4:d
settab+4:b settab,5?ia
settab+4:b settab,5?ia; 0
getc+4,3:b main.c?C; 0
settab+4:b settab,5?ia; ptab/o; 0
$b
breakpoints
count bkpt command
1 ˜tabpos+04
3 _getc+04 main.c?C;0
1 _fopen+04
1 ˜settab+04 settab,5?ia;ptab?o;0
˜settab: jsr r5,csv
˜settab+04: bpt
˜settab+06: clr 0177770(r5)
˜settab+012: cmp $0120,0177770(r5)
˜settab+020: blt ˜settab+076
˜settab+022:
0177766: 0177770
0177744: @`
T0177744: T
h0177744: h
i0177744: i
s0177744: s

- 20 -

Figure 7: ADB output for C program with breakpoints
adb ex3 −
h+4:b hcnt/d; h.hi/; h.hr/
g+4:b gcnt/d; g.gi/; g.gr/
f+4:b fcnt/d; f.fi/; f.fr/
:r
ex3: running
_fcnt: 0
0177732: 214
symbol not found
f+4:b fcnt/d; f.a/; f.b/; f.fi/
g+4:b gcnt/d; g.p/; g.q/; g.gi/
h+4:b hcnt/d; h.x/; h.y/; h.hi/
:c
ex3: running
_fcnt: 0
0177746: 1
0177750: 1
0177732: 214
_gcnt: 0
0177726: 2
0177730: 3
0177712: 214
_hcnt: 0
0177706: 2
0177710: 1
0177672: 214
_fcnt: 1
0177666: 2
0177670: 3
0177652: 214
_gcnt: 1
0177646: 5
0177650: 8
0177632: 214
HIT DEL
f+4:b fcnt/d; f.a/"a = "d; f.b/"b = "d; f.fi/"fi = "d
g+4:b gcnt/d; g.p/"p = "d; g.q/"q = "d; g.gi/"gi = "d
h+4:b hcnt/d; h.x/"x = "d; h.y/"h = "d; h.hi/"hi = "d
:r
ex3: running
_fcnt: 0
0177746: a = 1
0177750: b = 1
0177732: fi = 214
_gcnt: 0
0177726: p = 2
0177730: q = 3
0177712: gi = 214
_hcnt: 0
0177706: x = 2
0177710: y = 1
0177672: hi = 214
_fcnt: 1
0177666: a = 2
0177670: b = 3
0177652: fi = 214
HIT DEL
$q

- 21 -

Figure 8: ADB address maps

407 files

a.out hdr text+data
__________

0 D

core hdr text+data stack
______________...... ___________________

0 D S E

410 files (shared text)

a.out hdr text data
_____________________________________

0 T B D

core hdr data stack
______________________________________...... ___________________

B D S E

411 files (separated I and D space)

a.out hdr text data
_____________________________________

0 T 0 D

core hdr data stack
______________________________________...... ___________________

0 D S E

The following adb variables are set.

407 410 411

b base of data 0 B 0
d length of data D D−B D
s length of stack S S S
t length of text 0 T T

- 22 -

Figure 9: ADB output for maps

adb map407 core407
$m
text map `map407´
b1 = 0 e1 = 0256 f1 = 020
b2 = 0 e2 = 0256 f2 = 020
data map `core407´
b1 = 0 e1 = 0300 f1 = 02000
b2 = 0175400 e2 = 0200000 f2 = 02300
$v
variables
d = 0300
m = 0407
s = 02400
$q

adb map410 core410
$m
text map `map410´
b1 = 0 e1 = 0200 f1 = 020
b2 = 020000 e2 = 020116 f2 = 0220
data map `core410´
b1 = 020000 e1 = 020200 f1 = 02000
b2 = 0175400 e2 = 0200000 f2 = 02200
$v
variables
b = 020000
d = 0200
m = 0410
s = 02400
t = 0200
$q

adb map411 core411
$m
text map `map411´
b1 = 0 e1 = 0200 f1 = 020
b2 = 0 e2 = 0116 f2 = 0220
data map `core411´
b1 = 0 e1 = 0200 f1 = 02000
b2 = 0175400 e2 = 0200000 f2 = 02200
$v
variables
d = 0200
m = 0411
s = 02400
t = 0200
$q

- 23 -

Figure 10: Simple C program for illustrating formatting and patching

char str1[] "This is a character string";
int one 1;
int number 456;
long lnum 1234;
float fpt 1.25;
char str2[] "This is the second character string";
main()
{

one = 2;
}

- 24 -

Figure 11: ADB output illustrating fancy formats

adb map410 core410
<b,−1/8ona
020000: 0 064124 071551 064440 020163 020141 064143 071141

_str1+016: 061541 062564 020162 072163 064562 063556 0 02

_number:
_number: 0710 0 02322 040240 0 064124 071551 064440

_str2+06: 020163 064164 020145 062563 067543 062156 061440 060550

_str2+026: 060562 072143 071145 071440 071164 067151 0147 0

savr5+02: 0 0 0 0 0 0 0 0

<b,20/4o4ˆ8Cn
020000: 0 064124 071551 064440 @`@`This i

020163 020141 064143 071141 s a char
061541 062564 020162 072163 acter st
064562 063556 0 02 ring@`@`@b@`

_number: 0710 0 02322 040240 H@a@`@`R@d @@
0 064124 071551 064440 @`@`This i
020163 064164 020145 062563 s the se
067543 062156 061440 060550 cond cha
060562 072143 071145 071440 racter s
071164 067151 0147 0 tring@`@`@`
0 0 0 0 @`@`@`@`@`@`@`@`
0 0 0 0 @`@`@`@`@`@`@`@`

data address not found
<b,20/4o4ˆ8t8cna
020000: 0 064124 071551 064440 This i
_str1+06: 020163 020141 064143 071141 s a char
_str1+016: 061541 062564 020162 072163 acter st
_str1+026: 064562 063556 0 02 ring
_number:
_number: 0710 0 02322 040240 HR
_fpt+02: 0 064124 071551 064440 This i
_str2+06: 020163 064164 020145 062563 s the se
_str2+016: 067543 062156 061440 060550 cond cha
_str2+026: 060562 072143 071145 071440 racter s
_str2+036: 071164 067151 0147 0 tring
savr5+02: 0 0 0 0
savr5+012: 0 0 0 0
data address not found
<b,10/2b8tˆ2cn
020000: 0 0

_str1: 0124 0150 Th
0151 0163 is
040 0151 i
0163 040 s
0141 040 a
0143 0150 ch
0141 0162 ar
0141 0143 ac
0164 0145 te

$Q

- 25 -

Figure 12: Directory and inode dumps

adb dir −
=nt"Inode"t"Name"
0,−1?ut14cn

Inode Name
0: 652 .

82 ..
5971 cap.c
5323 cap
0 pp

adb /dev/src −
02000>b
?m<b
new map `/dev/src´
b1 = 02000 e1 = 0100000000 f1 = 0
b2 = 0 e2 = 0 f2 = 0
$v
variables
b = 02000
<b,−1?"flags"8ton"links,uid,gid"8t3bn"size"8tbrdn"addr"8t8un"times"8t2Y2na
02000: flags 073145

links,uid,gid 0163 0164 0141
size 0162 10356
addr 28770 8236 25956 27766 25455 8236 25956 25206
times 1976 Feb 5 08:34:56 1975 Dec 28 10:55:15

02040: flags 024555
links,uid,gid 012 0163 0164
size 0162 25461
addr 8308 30050 8294 25130 15216 26890 29806 10784
times 1976 Aug 17 12:16:51 1976 Aug 17 12:16:51

02100: flags 05173
links,uid,gid 011 0162 0145
size 0147 29545
addr 25972 8306 28265 8308 25642 15216 2314 25970
times 1977 Apr 2 08:58:01 1977 Feb 5 10:21:44

- 26 -

ADB Summary

Command Summary

a) formatted printing

? format print from a.out file according to format

/ format print from core file according to format

= format print the value of dot

?w expr write expression into a.out file

/w expr write expression into core file

?l expr locate expression in a.out file

b) breakpoint and program control

:b set breakpoint at dot
:c continue running program
:d delete breakpoint
:k kill the program being debugged
:r run a.out file under ADB control
:s single step

c) miscellaneous printing

$b print current breakpoints
$c C stack trace
$e external variables
$f floating registers
$m print ADB segment maps
$q exit from ADB
$r general registers
$s set offset for symbol match
$v print ADB variables
$w set output line width

d) calling the shell

! call shell to read rest of line

e) assignment to variables

>name assign dot to variable or register name

Format Summary

a the value of dot
b one byte in octal
c one byte as a character
d one word in decimal
f two words in floating point
i PDP 11 instruction
o one word in octal
n print a newline
r print a blank space
s a null terminated character string
nt move to next n space tab
u one word as unsigned integer
x hexadecimal
Y date
ˆ backup dot
"..." print string

Expression Summary

a) expression components

decimal integer e.g. 256
octal integer e.g. 0277
hexadecimal e.g. #ff
symbols e.g. flag _main main.argc
variables e.g. <b
registers e.g. <pc <r0
(expression) expression grouping

b) dyadic operators

+ add
− subtract
* multiply
% integer division
& bitwise and
 bitwise or
round up to the next multiple

c) monadic operators

˜ not
* contents of location
− integer negate

	Cover
	Supplementary Documents
	Summary
	UNIX Time-Sharing System
	UNIX For Beginners
	Editor
	Advanced Editing
	Shell
	LEARN
	ms Macros
	ms reference card
	Eqn
	Eqn User's Guide
	Tbl
	Refer
	TROFF
	TROFF Tutorial
	C Reference Manual
	Lint
	Make
	UNIX Programming
	ADB

